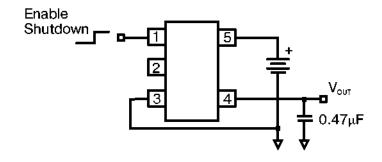
GENERAL DESCRIPTION

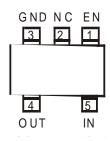
The MIC5213 is a μ Cap 80mA linear voltage regulator in the SC-70 package. Featuring half the footprint of the standard SOT-23 package, this regulator has very low dropout voltage (typically 20mV at light loads and 300mV at 80mA) and very low ground current (225 μ A at 20mA output). It also offers better than 3% initial accuracy and includes a logic-compatible enable input.

The μ Cap regulator design is optimized to work with low-value, low-cost ceramic capacitors. The outputs typically require only 0.47 μ F of output capacitance for stability.


Designed especially for hand-held, battery-powered devices, the MIC5213 can be controlled by a CMOS or TTL compatible logic signal. When disabled, power consumption drops nearly to zero. If on-off control is not required, the enable pin may be tied to the input for 3-terminal operation. The ground current of the MIC5213 increases only slightly in dropout, further prolonging battery life. Key MIC5213 features include current limiting, overtemperature shutdown, and protection against reversed battery.

The MIC5213 is available in 2.5V, 2.6V, 2.7V, 2.8V, 3.0V, 3.3V, 3.6, 4.0 and 5.0V fixed voltages. Other voltages are available; contact Mikron for details.

FEATURES


- SC-70 package
- Wide Selection of output voltages
- Guaranteed 80mA output
- Low quiescent current
- Low dropout voltage
- Tight load and line regulation
- Low temperature coefficient
- Current and thermal limiting
- Reversed input polarity protection
- Zero off-mode current
- Logic-controlled shutdown
- Stability with low-ESR ceramic capacitors

TYPICAL APPLICATION

April 2002- revised March 2015

PIN CONFIGURATION (SC-70-5 Package)

APPLICATIONS

- Cellular telephones
- Laptop, notebook, and palmtop computers
- Battery-powered equipment
- Bar code scanners
- SMPS post-regulator/DC-to-DC modules
- High-efficiency linear power supplies

ABSOLUTE MAXIMUM RATINGS (*Note 1*)

Parameter	Symbol	Ratings
Input Supply Voltage	V _{IN}	-20V to +20V
Enable input Voltage	V _{EN}	-20V to +20V
Power Dissipation	PD	Internally Limited
Storage Temperature Range	Ts	-60°C to +150°C
Lead Temperature (Soldering, 5 sec.)		260°C
ESD (Note 3)		

OPERATING RATINGS (Note 2)

Parameter	Symbol	Ratings
Input Voltage	V _{IN}	2.5V to 16V
Enable Input Voltage	V _{EN}	0V to V _{IN}
Junction Temperature Range	TJ	-40°C to +125°C
Thermal Resistance (Note 4)	θ _{JA}	

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function	
1	EN	Enable (Input): TTL/CMOS compatible control input. Logic	
		high=enabled; Logic low or open=shutdown.	
2	NC	Not internally connected	
3	GND	Ground	
4	OUT	Regulator Output	
5	IN	Supply Input	

ELECTRICAL CHARACTERISTICS

 $V_{IN} = V_{OUT} + 1V$; $I_L = 1$ mA; $C_L = 0.47 \mu$ F; $V_{EN} \ge 2.0V$; $T_J = 25$ °C, **bold** values indicate -40°C $\le T_J \le +125$ °C; unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage Accuracy	Vo		-3 - 4		3 4	%
Output Voltage Temp. Coefficient	$\Delta V_0 / \Delta T$	(Note 5)		50	200	ppm/°C
Line Regulation	$\Delta V_0/V_0$	V _{IN} =V _{OUT} +1V to 16V		0.008	0.3 0.5	%
Load Regulation	$\Delta V_0/V_0$	I _L =0.1mA to 80 mA (<i>Note 6</i>)		0.08	0.3 0.5	%
Dropout Voltage (Note 7)	V _{IN} -V _O	Ι_=100μΑ		20		mV
		I _L =20mA		200	350	mV
		I _L =50mA		250		mV
		I _L =80mA		300	600	mV
Quiescent Current	Ι _Q	$V_{EN} \le 0.4V$ (shutdown)		0.01	10	μΑ
Ground Pin Current (Note 8)	I _{GND}	$I_L=100\mu A, V_{EN} \ge 2.0 V (active)$		180		μΑ
		$I_L=20mA$, $V_{EN} \ge 2.0$ V (active)		225	750	μΑ
		I_L =50mA, $V_{EN} \ge 2.0$ V (active)		850		μA
		I_L =80mA, $V_{EN} \ge 2.0$ V (active)		1800	3000	μΑ
Ground Pin Current at Dropout	I _{GNDDO}	V _{IN} =V _{OUT} (nominal)-0.5V (<i>Note 8</i>)		200	300	μΑ
Current Limit	I _{LIMIT}	V _{OUT} =0 V		180	250	mA
Thermal Regulation $\Delta V_0 / \Delta P_D$		(Note 9)		0.05		%W

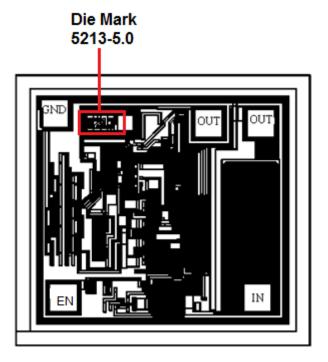
MIC5213, MIC5213K Low-Dropout Regulators

Enable Input						
Enable Input Voltage Level	V _{IN}	logic Low (off)			0.6	V
	VIH	logic high (on)	2.0			V
Enable Input Current	I _{IL}	$V_{IN} \leq 0.6 V$		0.01	1	μΑ
	I _{IH}	$V_{IH} \ge 2.0 V$		15	50	μΑ

Notes:

Note 1: Exceeding the absolute maximum rating may damage the device.

Note 2: The device is not guaranteed to function outside its operating rating

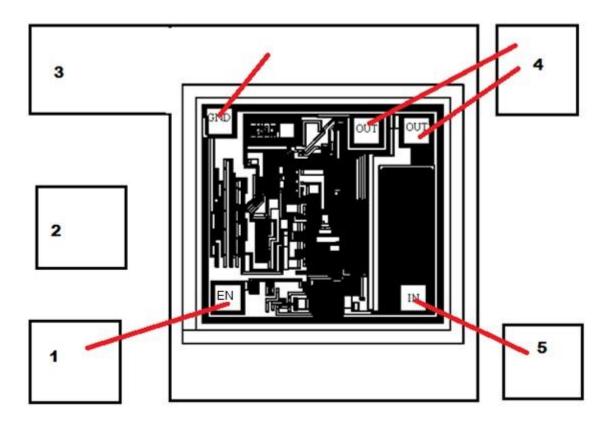

Note 3: Devices are ESD sensitive. Handling precautions recommended.

- Note 4: The maximum allowable power dissipation is a function of the maximum junction temperature, $T_{J(max)}$, the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation at any ambient temperature is calculated using: $P_{D(max)} = (T_{J(max)} T_A) \div \theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. θ_{JA} of the SC-70-5 is 450°C/W, mounted on a PC board.
- *Note 5:* Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range. *Note 6:* Regulation is measured at constant junction temperature using low duty cycle pulse testing.

Changes in output voltage due to heating effects are covered by the thermal regulation specification

- *Note 7:* Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.
- *Note 8:* Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.
- Note 9: Thermal regulation is defined as the change in output voltage at a time "t" after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for an 80mA load pulse at V_{IN} = 16V for t = 10ms

PAD LOCATION AND COORDINATES



Die size (including scribe line): 0.84×0.78 mm² MIC5213 – for 4" wafers MIC5213K – for 6" wafers

Name (Package)	Pad centers coordina	Pad Size (µm×µm)	
	Х	Υ	
EN	135	137	80×80
GND	110	669.5	80×80
OUT	550	641	80×80
OUT	700	641	80×80
IN	689.5	137	80×80

April 2002- revised March 2015

BONDING DIAGRAM MIC5213(K) Package SC-70-5 (bottom view)

ASSEMBLY CHARACTERISTICS

No.	Assembly Characteristics	Value
1	Wafer Size	6 Inch
2	Wafer Thickness before Grinding	675 +/-25 μm
3	Scribe Street Width	80 μm
4	Chip Size (including Scribe Line)	0.84×0.78 mm ²
5	Die Attach Material	Substrate is connected to GND
6	Quantity of Bond Pad Metal Layers	1
7	Pad Thickness	1.2 μm
8	Composition of Metal Layers	Al+Si(1.0%)+Ti(0.5%)
9	Min. Bond Pad Opening Size	80×80 μm
10	Min. Bond Pad Pitch	147 μm
11	Min. Wire Diameters	1 mil (25 μm)
12	Circuit Under Pad Design (CUP)	Yes

ADDITIONAL INFORMATION

Pb-free products:

• RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

Green products:

- Lead-free (RoHS compliant)
- Halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

The appearance complies with the requirements of the company standards.

Website: www.mikron-semi.com E-mail: globalsales@mikron.ru