100mA Low Dropout Voltage Regulators

September 2014 – revised December 2014

FEATURES

- High accuracy output voltage
- Guaranteed 100mA output
- Very low quiescent current
- Low dropout voltage
- Extremely tight load and line regulation
- Very low temperature coefficient
- Needs only 1µF for stability
- Error flag warns of output dropout
- Logic-controlled electronic shutdown
- Output programmable from 1.24V to 29V

APPLICATIONS

- Battery-powered systems
- Cordless telephones
- Radio-control systems
- Portable/palm-top/notebook computers
 - Portable consumer equipment
- Portable instrumentation
- Avionics
- Automotive electronics
- SMPS post-regulator
- Voltage reference

PRODUCT DESCRIPTION

The 29T50K-XX/29T51K-XX is a low power voltage regulator. This device is an excellent choice for use in battery-powered applications such as cordless telephones, radio-control systems, and portable computers. The 29T50K-XX/29T51K-XX features a very low quiescent current (75µA typ.) and a very low drop output voltage (typ. 40mV at a light load and 380mV at 100mA). Furthermore, a tight initial output voltage tolerance of 0.5% typ., an extremely good load and line regulation of 0.05% typ. and a very low output temperature coefficient – all that makes the 29T50K-XX/29T51K-XX very useful as a low-power voltage reference.

The error flag output feature is used as a power-on reset for warning of a low output voltage, which is due to falling batteries on the input. Another feature is the logic-compatible shutdown input, which enables the regulator to be switched on and off.

The 29T51K-XX is available in 8-pin plastic package. The regulator output voltage may be pin-strapped for a –XX volts or programmed for 1.24V to 29V with an external pair of resistors.

The 29T50K-XX is offered in 3-pin TO-92 package compatible with other regulators.

Power dissipation	PD	Internally-limited
Lead temperature		260°C
(soldering, 5 seconds)		
Storage temperature range	T _{STG}	-65°C to +150°C
Operating junction temperature	TJ	-40°C to +125°C
range		
Input supply voltage	V _{IN}	-0.3V to +30V
FEEDBACK input voltage		-1.5V to +30V
SHUTDOWN input voltage		-0.3V to +30V
ERROR COMPARATOR output		-0.3V to +30V

ABSOLUTE MAXIMUM RATINGS

V _{OUT,} V	Device
2.85*	29T50K-2.85, 29T51K-2.85
3.0	29T50K-3.0, 29T51K-3.0
3.3	29T50K-3.3, 29T51K-3.3
5.0	29T50K-5.0, 29T51K-5.0

*other versions (V_{OUT} =2.0V to 5.0V) are also available. Please, consult the factory for more information

100mA Low Dropout Voltage Regulators

September 2014 – revised December 2014

ELECTRICAL CHARACTERISTICS

(At $T_J = 25^{\circ}C$, $V_{IN} = V_0 + 1V$, $I_L = 100\mu A$ and $C_L = 1\mu F$, unless otherwise noted)

Parameter	Conditions (Note 1)	Min.	Тур.	Max.	Units
Output voltage	T_=25°C	0.99 IV ₀ I	V ₀	1.01 IV ₀ I	V
	$-25^\circ C \leq T_J \leq 85^\circ C$	0.985 IV ₀ I		1.015 IV₀I	
	Full operating temperature	0.98 IV ₀ I		1.02 IV ₀ I	
Output voltage	$100\mu A \le I_L \le 100mA$, $T_J \le T_{Jmax}$	0.976 IV ₀ I	V ₀	1.024 IV ₀ I	
Output voltage temperature coefficient	(Note 2)		50	150	ppm/ºC
Line regulation	$V_0 + 1V \le V_{IN} \le 30V$		0.04	0.2	%
Load regulation (Note 3)	100µA ≤ I _L ≤ 100mA		0.1	0.3	%
Dropout voltage (Note 4)	I _L = 100μA		50	80	mV
	I _L = 100mA		380	450	
Ground current	I _L = 100μA		75	120	μA
	I _L = 100mA		3	12	mA
Dropout ground current	$V_{IN} = V_0 - 0.5V, I_L = 100 \mu A$		110	170	μA
Current limit	V _{OUT} = 0		160	200	mA
Thermal regulation			0.05	0.2	%/W
Output noise, 10Hz to 100kHz	C _L = 1µF		430		μV _{rms}
	C _L = 200µF		160		μV _{rms}
	C _L = 3.3µF		100		μV _{rms}
	(Bypass = 0.01μ F, pins 7 to 1				
Turn-on time	(29151K-XX))			70	usec
8-nin versions only					P
Reference voltage		1.21	1,235	1.26	V
Reference voltage	Over temperature (Note 5)	1 185	1.200	1.20	· ·
FEEDBACK pin bias current		1.100	20	40	nA
Reference voltage temperature coefficient	(Note 2)		50		nnm/°C
FEEDBACK pin bias current temperature Coefficient	(0.1		nA/°C
ERROR COMPARATOR			0.1		
Output leakage current	V _{OH} = 30V		0.01	1.0	μA
Output low voltage	$V_{IN} = 4.5V, I_{OI} = 400\mu A$		150	250	mV
Upper threshold voltage	(Note 6)	40	60		
Lower threshold voltage	(Note 6)		75	95	
Hysteresis	(Note 6)		15		
SHUTDOWN input		1			
Input logic voltage	Low (Regulator ON)		1.3	0.7	V
	High(Regulator OFF)	2			
SHUTDOWN pin input current	V _{shutdown} = 2.4V		30	50	μA
	V _{shutdown} = 30V		450	600	
Regulator output current in Shutdown	(Note 7)				
	V _{OUT} = 5.0V		3	10	
	$3.3V \le V_{OUT} < 5.0V$			20	
	$2.0V \le V_{OUT} < 3.3V$			30	

Note 1: Additional conditions for 8-pin versions are the FEEDBACK tied to $-XX V_{TAP}$ and the OUTPUT tied to the SENSE output ($V_{OUT} = XX V$) and $V_{shutdown} \le 0.8V$.

Note 2: Output or reference voltage temperature coefficients are defined as the worst case voltage change divided by the total temperature range.

Note 3: The Regulation is measured at a constant junction temperature using pulse testing with a low duty cycle. Changes in the output voltage due to heating effects are covered under the specification for thermal regulation.

Note 4: The Dropout voltage is defined as the input-to-output differential, at which the output voltage drops 100mV below its nominal value measured at 1V differential. At very low values of a programmed output voltage, the minimum input supply voltage 2V (2.3V over temperature) must be taken into account.

Note 5: $V_{\text{REF}} \le V_{\text{OUT}} \le (V_{\text{IN}}\text{-}1V)$, 2.3V $\le V_{\text{IN}} \le$ 30V, 100 μ A $\le I_{\text{L}} \le$ 100mA, $T_{\text{J}} \le T_{\text{Jmax}}$

Note 6: Comparator thresholds are expressed in terms of a voltage differential at the FEEDBACK terminal below the nominal reference voltage measured at V_0+1V input. To express these thresholds in terms of an output voltage change, multiply by the error amplifier gain= V_{OUT}/V_{ref} =(R1+R2)/R2.For example, at a programmed output voltage of 5V, the Error output is guaranteed to go low when the output drops by 95mV x 5V/1.235V=384mV. Thresholds remain constant as a percent of V_{OUT} as V_{OUT} is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.

Note 7: $V_{shutdown} \ge 2 V$, $V_{IN} \le 30V$, $V_{OUT} = 0$, the FEEDBACK pin is tied to $-XX V_{TAP}$.

mkr

BLOCK DIAGRAM AND TYPICAL APPLICATIONS

Fig.1. Block diagrams

Fig.2. Voltage regulator

mkr

100mA Low Dropout Voltage Regulators September 2014 – revised December 2014

29T50K-XX PAD LOCATION AND COORDINATES (METAL LAYERS DRAWING)

Die Mark: 29T50K-XX

Pad	Name	Pad opening size (µm²)	Pad centers coordinates (µm)	
			Х	Y
1	OUTPUT	90 x 90	110	650
2	OUTPUT sense	90 x 90	120	500
3	Non Connect	90 x 90	120	350
4	GND	110 x 90	110	100
5	Non Connect	90 x 90	830	180
6	Non Connect	90 x 90	830	330
7	Non Connect	90 x 90	830	480
8	INPUT	90 x 90	790	650

mkr®

100mA Low Dropout Voltage Regulators September 2014 – revised December 2014

29T51K-XX PAD LOCATION AND COORDINATES (METAL LAYERS DRAWING)

Die Mark: 29T51K-XX

Pad	Name	Pad opening size	Pad center coordinates (µm)	
		(µm²)	Х	Y
1	OUTPUT	90 x 90	110	650
2	SENSE	90 x 90	120	500
3	SHUTDOWN	90 x 90	120	350
4	GND	110 x 90	110	100
5	ERROR	90 x 90	830	180
6	XX V _{TAP}	90 x 90	830	330
7	FEEDBACK	90 x 90	830	480
8	INPUT	90 x 90	790	650

ASSEMBLY DRAWING

29T50K-XX (TO-92)

29T51K-XX (Surface-mount package) **100mA Low Dropout Voltage Regulators** September 2014 – revised December 2014

∝ mkr⊛n

Assembly Characteristics

No.	Assembly Characteristics	Value
1	Wafer Size	6 Inch
2	Wafer Thickness before Grinding	675 +/-25 μm
3	Scribe Street Width	80 µm
4	Chip Size (including Scribe Line)	0.96 × 0.76 mm ²
5	Die Attach Material	Substrate is connected to GND
6	Quantity of Bond Pad Metal Layers	1
7	Pad Thickness	1.6 µm
8	Composition of Metal Layers	Al+Si(1.0%)+Ti(0.5%)
9	Min. Bond Pad Opening Size	90×90 μm
10	Min. Bond Pad Pitch	150 μm
11	Min. Wire Diameters	0.9 mil (22.9 μm)
12	Circuit Under Pad Design (CUP)	No

For your information

Pb-free products:

• RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

Green products:

Lead-free (RoHS compliant)

• Halogen free (Br or CI does not exceed 900ppm by weight in homogeneous material and total of Br and CI does not exceed 1500ppm by weight).

The appearance complies with the requirements of the company standards.