March 1999- revised October 2013

FEATURES

- 400mA output within 2% over temperature
- Very low quiescent current
- Low dropout voltage (420 mV Typ)
- Extremely tight load and line regulation
- Very low temperature coefficient
- Current and thermal limiting
- Unregulated DC input can withstand -20V reverse battery and +60V positive transients
- Direct replacement for SGS-THOMSON-L48XX Series, but has lower ground current, higher accuracy of output voltage and extremely tight load and line regulation.
 4-pins versions (fixed model) and 5-pins versions (adjust model) has shutdown input.

Device Selection Guide

Vout, VOLTS	DEVICE
3.3V*	L4833
5V	L4805
8V	L4808
8.5V	L4885
9V	L4809
10V	L4810
12V	L4812
15V	L4815
adj	L48-adj

APPLICATIONS

- · High-efficiency linear regulator
- Battery powered systems
- Portable/Palm top/Notebook computers
- Portable consumer equipment
- Portable Instrumentation
- Automotive Electronics
- SMPS Post-Regulator

- other fixed versions are also available V_{OUT} = 2.0V to 5.0V
 Please consult factory for more information

PRODUCT DESCRIPTION

This series of fixed-voltage monolithic micropower voltage regulators is designed for a wide range of applications. This device excellent choice for use in battery-powered application. Furthermore, the quiescent current increases only slightly at dropout, which prolongs battery life.

This series of fixed-voltage regulators features very low quiescent current (100mA Typ.) and very low drop output voltage (Typ. 60mV at light load and 420mV at 400mA). This includes a tight initial tolerance of 0.5% typ., extremely good load and line regulation of 0.05% typ., and very low output temperature coefficient. This series of fixed-voltage regulators is offered in 3-pin TO-220 package compatible with other fixed-voltage regulators. Adjust model is offered in 5-pin TO-220 package and fixed model with shutdown input is offered in 4-pin TO-220 package.

Absolute Maximum Ratings

Power Dissipation	Internally Limited		
Lead Temperature (Soldering,5 seconds)	260°C		
Storage Temperature Range	-65°C to+150°C		
Operating Junction Temperature Range	-55°C to +150°C		
Input Supply Voltage	-20V to +35V		
Continuous total dissipation at 25°C free-air temperature	2W		
Continuous total dissipation at (or below) 25°C case temperature	15W		

L48XX ₋48XXK

400mA Low Dropout Voltage Regulators

March 1999- revised October 2013

ELECTRICAL CHARACTERISTICS (T_J = 25°C, V_{IN} = 14.4V, I_L=5mA, C_O=100µF; unless otherwise noted)

Parameter	Conditions	Min	Тур	Max	Units
Output Voltage	-25°C≤T _J ≤85°C Full Operating Temperature	0.985 V ₀ 0.98 V ₀	V ₀	1.015 V ₀ 1.02 V ₀	
Output Voltage	$1 \text{mA} \le I_L \le 400 \text{mA}, T_J \le T_{JMAX}$	0.975 V ₀	V ₀	1.025 V ₀	V
Input Supply Voltage				26	
Output Voltage Temperature Coefficient	(Note 1)		50	150	ppm/°C
Line Regulation (Note 2)	13V ≤ V _{IN} ≤ 26V (Note 3)		0.1	0.4	%
Load Regulation (Note 2)	1mA ≤ l _L ≤ 400mA		0.1	0.3	%
Dropout Voltage (Note 4)	I _L =150 mA I _L =400 mA		200 420	400 700	mV
Ground Current (Note 5)	I _L = 100 μA I _L = 150 mA I _L = 400 mA		100 12 30	200 20 50	μA mA
Dropout Ground Current (Note 5)	V _{IN} = V _{OUT} -0.5V, I _L =100 μA		200	300	μΑ
Current Limit	V _{OUT} =0		600	900	mA
Thermal Regulation (Note 6)			0.05	0.2	%/W
Output Noise, 10Hz to 100KHz I _L =100mA	C _L =2.2μF C _L =3.3μF C ₁ =33μF		500 350 120		μV RMS
Ripple Rejection Ratio	I_0 =350mA, f = 120Hz, C_0 =100 μ F, $V_{IN} = V_0$ +3V+2Vpp	60			dB
Thermal Shutdown	1 mA ≤ I _L ≤ 400 mA		165		°C
adjust model					
Reference Voltage		1.21	1.235	1.26	V
Reference Voltage	Over Temperature (Note 7)	1.185		1.285	1
Feedback Pin Bias Current			20	40	nA
Reference Voltage Temperature Coefficient	(Note 1)		50		ppm/°C
Feedback Pin Bias Current Temperature Coefficient			0.1		nA/°C
Shutdown Input		<u>'</u>			
Input Logic Voltage	Low (Regulator ON) High (Regulator OFF)	2	1.3	0.7	V
Shutdown Pin Input Current	V _S =2.4V V _S =26V		30 450	50 600	
Regulator Output Current in Shutdown	(Note 8)			200	μA

Note 1: Output or reference voltage temperature coefficients defined as the worst case voltage change divided by the total temperature range.

Note 2: Regulations is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

Note 3: Line regulation is tested at 150°C for I_L = 5mA. For I_L = 100µA and T_J = 125°C, line regulation is guaranteed by design to 0.2%. For L4815 16V \leq V_{IN} \leq 26V.

Note 4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Note 5: Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the ground pin current and output load current.

Note 6: Thermal regulation is the change in output voltage at a time T after a change in power dissipation, excluding load or line regulation effects. Specifications are for a 200mA load pulse (3W pulse) for T = 10ms. Note 7: Vref \leq V_{OUT} \leq (V_{IN}-1V), 2.3V \leq V_{IN} \leq 26V, 100µA \leq I_L \leq 400mA, T_J \leq T_{JMAX}.

Note 8: Vshutdown \geq 2V, $V_{IN} \leq$ 26V, $V_{OUT} = 0V$.

March 1999- revised October 2013

Block Diagram and Typical Applications L4805

Figure 1. Fixed Regulator

L48-adj

March 1999- revised October 2013

PAD LOCATION

Chip size: $2.57*1.57 \text{ mm}^2$ (include the scriber lines) The width of the scriber line: $80 \mu \text{m}$

L48XX is produced on 4" wafer L48XXK is produced on 6" wafer

PAD LOCATION COORDINATES

Pad Pad		Pad	Pad center coordinates (µm)		
N	Name	opening size (μm)	Х	Υ	
1	Input	180*180	365	1370	
2	Output	180*180	365	180	
3	Output (fixed model) Feedback (adjust model)	180*180	1170	180	
4	GND	180*180	1855	180	
5	Shutdown	180*180	2385	180	

March 1999- revised October 2013

Assembly Drawing

The appearance complies with the requirements of the company standards.