МИКРОСХЕМЫ ЦИФРОВЫХ СИНТЕЗАТОРОВ ОТСЧЕТОВ

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ

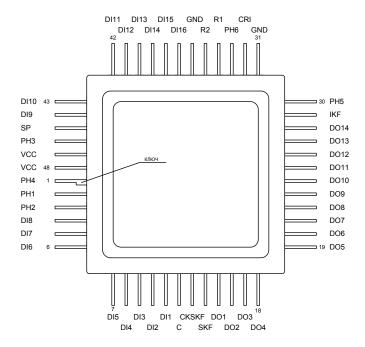
Цифровые синтезаторы отсчетов предназначены для формирования отсчетов синусоидальных колебаний с заданной частотой и начальной фазой.

Цифровые синтезаторы отсчетов могут быть использованы для формирования литерных гетеродинных частот, компенсации доплеровского сдвига частоты, а также в качестве управляемого генератора в устройствах синхронизации и демодуляции сигналов.

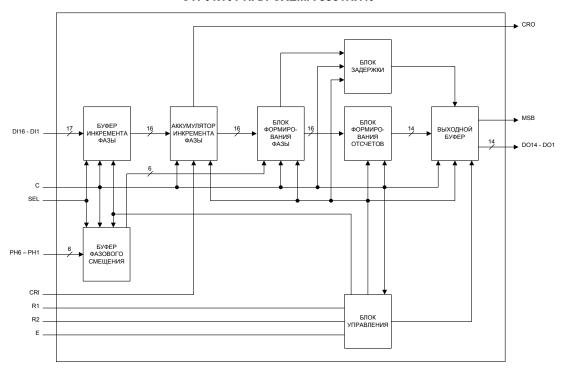
Разрядность инкремента фазы, бит Разрядность формируемых отсчетов, бит	
Количество отсчетов на интервале [0:2 π [
Разрядность кода фазового смещения, бит	6
Максимальная частота	
сигнала синхронизации, МГц	35
Напряжение питания, В	+5±10%
Температурный диапазон, ⁰С	60 ÷ +125
Тип корпуса	H16.48-1B

Микросхемы изготавливаются по КМОП технологии и имеют ТТЛ-совместимые входы и выходы.

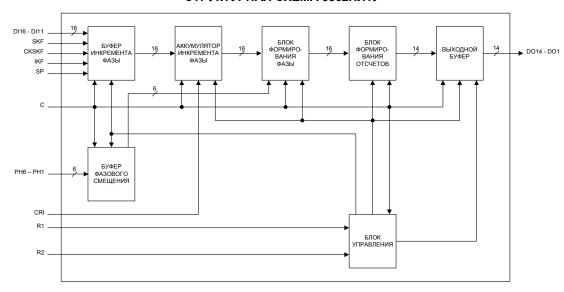
НАЗНАЧЕНИЕ ВЫВОДОВ


5861ПЛ1У

Обозна- чение	Назначение
DI	Входная шина инкремента фазы
PH	Входная шина кода фазового смещения
CRI	Вход переноса аккумулятора фазы
С	Вход синхронизации
R1	Вход асинхронного сброса
R2	Вход асинхронного сброса
Е	Вход разрешения выдачи информации.
SEL	Вход выбора режима включения
DO	Выходная шина отсчетов синусоидальной последовательности
CRO	Выход переноса аккумулятора фазы
MSB	Выход старшего разряда адреса


5862ПЛ1У

Обозна- чение	Назначение
DI	Входная шина инкремента фазы
PH	Входная шина кода фазового смещения
CRI	Вход переноса аккумулятора фазы
С	Вход синхронизации
R1	Вход асинхронного сброса
R2	Вход асинхронного сброса
SP	Вход управления режимом загрузки инкремента фазы
SKF	Вход инкремента фазы в последовательном коде
CKSKF	Вход синхросигнала загрузки инкремента фазы в последовательном коде
IKF	Вход сигнала записи инкремента фазы в последовательном коде
DO	Выходная шина отсчетов синусоидальной последовательности



СТРУКТУРНАЯ СХЕМА 5861ПЛ1У

СТРУКТУРНАЯ СХЕМА 5862ПЛ1У

В синтезаторах реализован метод непосредственного синтеза частоты на основе накапливающего сумматора и ПЗУ функции SIN(X).

На шину DI подается значение инкремента фазы, определяющее частоту генерируемой синусоиды, а на шину PH — двоичный код, определяющий значение начальной фазы.

Аккумулятор инкремента фазы в соответствии с заданным значением инкремента формирует предварительное значение фазы, которое после суммирования в блоке формирования фазы со значением начальной фазы поступает на блок формирования и выборки отсчетов.

Блок формирования отсчетов в каждом такте импульсов С выдает на выходную шину DO значение отсчета синусоидальной последовательности:

$$\begin{split} s(n) &= 8192 + 8191 \cdot sin \!\! \left(\frac{2\pi}{N} \cdot \alpha(n-4) \right); \\ \alpha(n-4) &= \!\! \left(\beta(n-6) + \!\! \left(\sum_{i=1}^{n-6} \phi(i) + p(i) \right) \right) \!\! mod \, N \, ; \end{split}$$

где n – номер такта работы микросхемы; N=65536.

Частота формируемой синусоидальной последовательности определяется выражением:

$$f_{OUT} = \frac{f_C \cdot \varphi}{65536};$$

где f_C — частота синхросигнала C; ϕ - значение инкремента фазы.

В микросхеме 5861ПЛ1У на выход выдаются также сигнал MSB, определяющий знак полуволны формируемой синусоиды, и сигнал переноса CRO из аккумулятора инкремента фазы. Кроме того, в микросхеме дополнительно имеются входы Е сигнала разрешения выдачи информации и SEL сигнала выбора режима включения синтезатора.

В микросхеме 5862ПЛ1У предусмотрена возможность загрузки инкремента фазы в последовательном коде (входы SKF, CKSKF, IKF, SP)

Сигналы R1 и R2 осуществляют асинхронный сброс внутренних регистров синтезаторов.