34063CM3K

1.2A STEP-DOWN / STEP-UP / INVERTING DC-DC CONVERTER

July 2009 - revised July 2014

DESCRIPTION

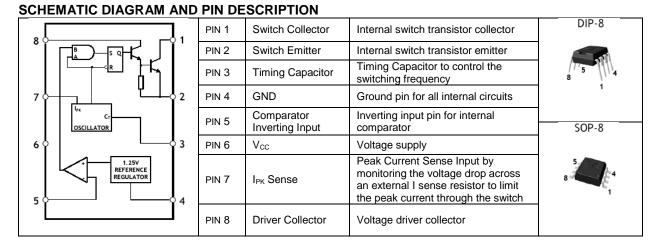
The 34063CM3K is a monolithic switching regulator control circuit containing the primary functions required for DC-DC converters. This device consists of internal temperature compensated reference, voltage comparator, controlled duty cycle oscillator with active current limit circuit, driver and high current output switch. The device is specifically designed to be used in Step-Down, Step-Up and Voltage-Inverting applications with a minimum number of external components.

The 34063CM3K is the enhanced version of MC34063A with the ability to work in higher frequency.

The 34063CM3K is available in 2 packages: SOP- 8 and DIP-8.

FEATURES

Operation from 3V to 40V


Inv № 533

- Low Standby Current
- Current Limiting
- Output Switch Current to 1.2A
- **Output Voltage Adjustable**
- Operation Frequency up to 180 kHz $(C_T = 100 pF)$
- Precision 2% Reference
- Continuous Load Current up to 0.75A(Vin =12 to 24V, Rcs≥0.2Ω, DIP-8 package, see Note for Step-Down Application)

(rahr

APPLICATIONS

- **Battery Chargers**
- NICs/Switches/Hubs
- ADSL Modems
- **Negative Voltage Power Supplies**

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	
V _{cc}	Supply Voltage	3	40	V	
T _A	Ambient Temperature	-40	85	°C	

ABSOLUTE MAXIMUM RATINGS (NOTE 1)

SYMBOL		PARAMETER		UNIT	
V _{cc}	Power Supply Volta	ge	40	V	
V _{IR}	Comparator Input V	oltage Range	-0.3 to 40	V	
V _C (SWITCH)	Switch Collector Vo	Itage	40	V	
V _E (SWITCH)	Switch Emitter Volta	age (Vpin1= 40V)	40	V	
V _{CE} (SWITCH)	Switch Collector to	Emitter Voltage	40	V	
V _C (DRIVER)	Driver Collector Vol	tage	40	V	
I _C (DRIVER)	Driver Collector Cur	rent (NOTE 2)	100	mA	
I _{SW}	Switch Current		1.2	А	
POWER DISSIPATI	ON AND THERMAL CH	HARACTERISTICS	· · ·		
P _D		Power Dissipation (T_A = 25°C)	1.25	W	
R _{oja}	DIP Package	Thermal Resistance	100	°C/W	
PD		Power Dissipation (T_A = 25°C)	625	mW	
R _{@JA}	SOP Package	Thermal Resistance	160	°C/W	
TJ	Operating Junction	Operating Junction Temperature		°C	
T _{STG}	Storage Temperatu	re Range	-65 to 150	°C	
ESD for 34063CM3K			3000	V	

SEE NOTES ON THE NEXT PAGE ...

34063CM3K

1.2A STEP-DOWN / STEP-UP / INVERTING DC-DC CONVERTER

July 2009 – revised July 2014

ELECTRICAL CHARACTERISTICS

 V_{CC} = 5V, T_A = -40 TO 85°C, UNLESS OTHERWISE SPECIFIED

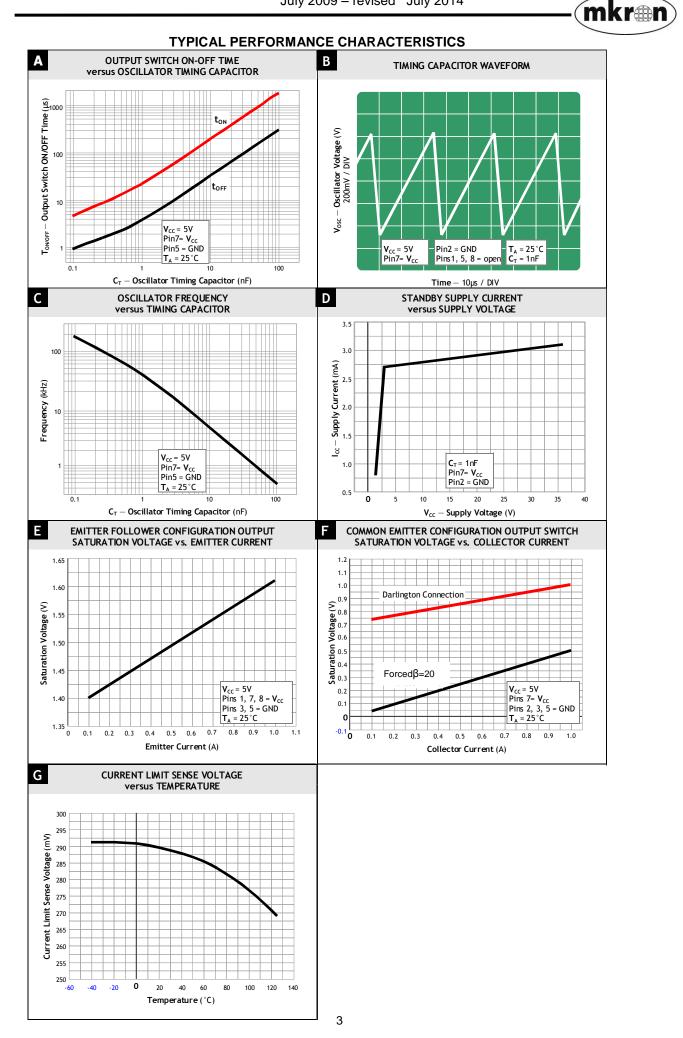
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT		
OSCILLATOR								
Fosc	Frequency	Vpin5 = 0V; $T_A = 25^{\circ}C$; $C_T = 1 \text{ nF}$	30	38	45	kHz		
I _{CHG}	Charge Current	$V_{CC} = 5.0V$ to 40V; $T_A = 25^{\circ}C$	30	38	45	μA		
IDISCHG	Discharge Current	$V_{CC} = 5.0V$ to 40V; $T_A = 25^{\circ}C$	180	240	290	μA		
I _{DISCHG} /I _{CHG}	Discharge to Charge Current Ratio	Pin 7 to V_{CC} ; $T_A = 25^{\circ}C$	5.2	6.5	7.5	-		
V _{IPK(SENCE)}	Current Limit Sense Voltage	$I_{CHG} = I_{DISCHG}; T_A = 25^{\circ}C$	250	300	350	mV		
OUTPUT S	WITCH (NOTE 3)							
$V_{\text{CE(SAT)}}$	Saturation Voltage, Darlington connection	I _{SW} = 0.8A; Pins 1,8 connected	-	1.0	1.3	V		
$V_{\text{CE(SAT)}}$	Saturation Voltage (see NOTE 4)	I_{SW} = 0.8 A; Rpin 8 = 82Ω to V _{CC} ; Forced β = 20	-	0.45	0.8	V		
h _{FE}	DC Current Gain	I _{SW} = 0.8 A; V _{CE} = 5.0 V T _A = 25°C	50	75	-	-		
I _{C(OFF)}	Collector Off-State Current	$V_{CE} = 40 V$	-	0.01	100	μA		
COMPARA	TOR							
V _{TH}	Threshold Voltage	$T_{A} = 25^{\circ}C$	1.225	1.25	1.275	v		
REG _{LINE}	Threshold Voltage Line Regulation	T _A = -40°C to +85°C V _{CC} = 3V to 40 V	1.210	1.4	1.290 5	mV		
I _{IB}	Input Bias Current	$V_{IN} = 0 V$	-	-20	-400	nA		
TOTAL DE	VICE					•		
I _{cc}			-	-	4	mA		

SEE NOTES ON THE NEXT PAGE ...

ELECTRICAL CHARACTERISTICS (CONTINUED)

NOTES

- 1: Stresses greater than those listed under «Absolute Maximum Ratings» may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under «Recommended Operating Conditions» is not implied. Exposure to «Absolute Maximum Ratings» for extended periods may affect device reliability.
- 2: Maximum package power dissipation limits must be observed.
- 3: Low duty cycle pulse technique are used during test to maintain junction temperature as close to ambient temperature as possible.
- 4: If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents (≤ 300mA) and high driver currents (≥ 30mA), it may take up to 2.0µs for it to come out of saturation. This condition will shorten the off time at frequencies 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:

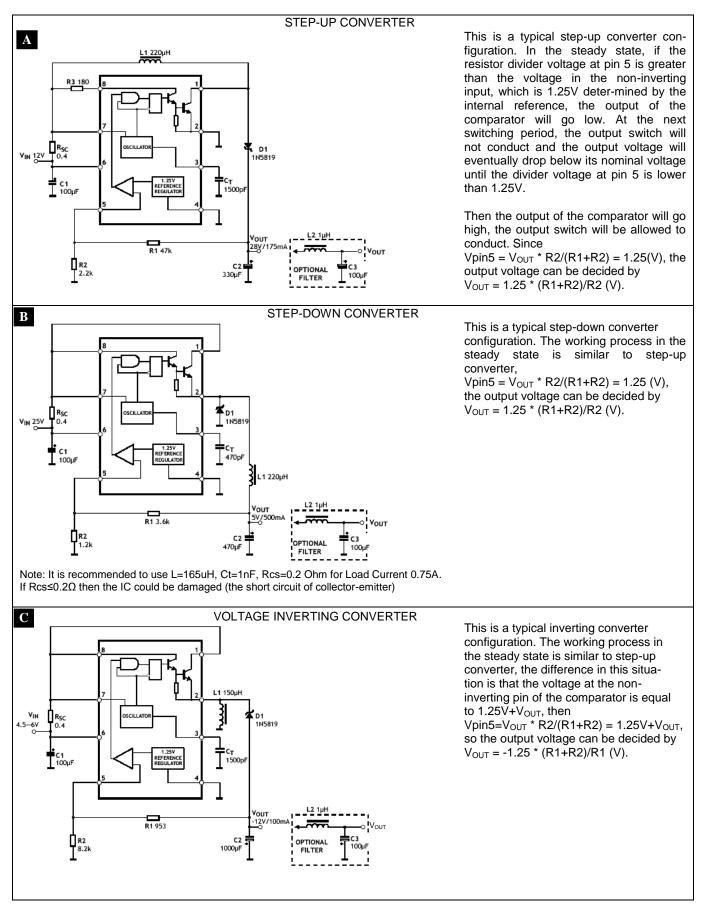

Forced β of output switch:

$$\frac{I_{C(OUTPUT)}}{I_{C(DRIVER)} - 7.0mA^*} \ge 10$$

* The 100Ω resistor in the emitter of the driver device requires about 7 mA before the output switch conducts.

Inv № 533

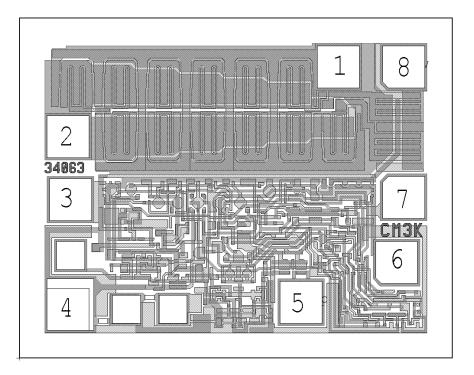
July 2009 – revised July 2014



Inv № 533

July 2009 – revised July 2014

TYPICAL APPLICATIONS



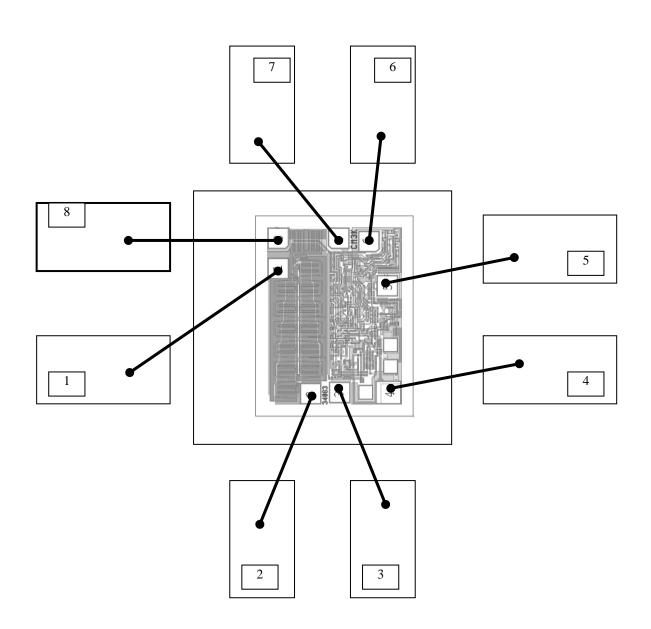
Inv № 53334063CM3K1.2A STEP-DOWN / STEP-UP / INVERTING DC-DC CONVERTER

July 2009 – revised July 2014

mkr⊛n

PAD LOCATION 34063CM3K

Chip size: $0.93 \times 0.73 \text{ mm}^2$


Pad Location Coordinates

Pad #	Pin #	Pin Name	Description	Center Coordinates		Pad Size	
				Х	Y	W	Н
1	1	SC	Switch Collector	685	625	90	90
2	2	SE	Switch Emitter	105	475	90	90
3	3	Тс	Timing Capacitor	110	340	90	90
4	4	GND	GND	110	115	100	110
5	5	CII	Comparator Inverting Input	605	120	90	90
6	6	Vcc	Vcc	810	205	90	90
7	7	I _{PK} S	Ipk Sense	825	345	90	90
8	8	DRVCOL	Driver Collector	825	625	90	90

Note : Metal thickness at the PAD is $2.25 \text{um} \pm 10\%$

Bonding Diagram Package DIP-8, SO-8

The appearance complies with the requirements of the company standards.