AS "ALFA RPAR"

Рижский завод полупроводниковых приборов Рига, Латвия www.alfarzpp.lv; alfa@alfarzpp.lv

1463УБ11,12,13

Прецизионные маломощные инструментальные усилители с фиксированными коэффициентами передачи: Аур=10,100,500

ОСОБЕННОСТИ

• Усиление 10, 100 и 500 устанавливается при производстве

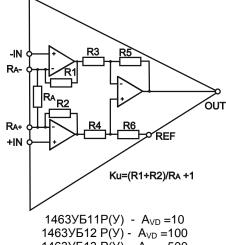
• Диапазон питающих напряжений от ± 4.5В до ± 16.5В

• Погрешность усиления 0,15-0,5% • Температурный дрейф усиления 5 ppm/°C • Полное напряжение смещения 200 мкВ Макс.

• Температурный дрейф напряжения смещения 1мкВ/ °С Макс.

• Нормированная ЭДС шума 17 нВ/√Гц на 1 кГц

Размах напряжения шума (0,1 Гц до 10 Гц) 0,4 – 0,8 мкВ p-p


• Полоса пропускания при A_{VD} = 10 (-3дБ) 600 кГц • Полоса пропускания при A_{VD} = 100 (-3дБ) 150 кГц • Полоса пропускания при A_{VD} = 500 (-3дБ) 40 кГц

• Корпуса – 2101.8-7, H04.16-2B

ПРИМЕНЕНИЕ

- Весовые измерения
- Интерфейс датчиков и системы сбора данных
- Управление производственными процессами

Функциональная схема

1463УБ13 P(У) - A_{VD} =500

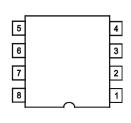
Рис.1

ОПИСАНИЕ

1463УБ11,12,13 – инструментальные усилители (ИУ) идеально подходят для многих областей применения, имеют малую потребляемую мощность и высокую точность. Коэффициенты передачи 10, 100 и 500 устанавливаются производстве. Малые габариты корпуса позволяют использовать эти ИУ в малогабаритной и переносной аппаратуре. Интегральные внутренние резисторы обеспечивают долговременную и температурную стабильность коэффициентов передачи. Благодаря высокой точности поддержания усиления, малому напряжению смещения нуля и малому дрейфу ИУ 1463УБ11,12,13 являются идеальными для применения в прецизионных системах сбора данных, в датчиках, в прецизионных мостовых схемах, измерительных системах, в промышленной автоматике, при приёме слабых сигналов, при передаче данных по длинным проводам, в медицинских приборах (ЭКГ, портативные измерители давления и др.). При заказе необходимо указывать конкретный тип изделия:

Тип изделия	Тип корпуса	Номер ТУ
1463УБ11Р	2101.8-7	АЕЯР.431130.307-02 ТУ
1463УБ11У	H04.16-2B	AEAP.431130.307-02 19
1463УБ12Р	2101.8-7	АЕЯР.431130.307-03 ТУ
1463УБ12У	H04.16-2B	AEAP.431130.307-03 19
1463УБ13Р	2101.8-7	АЕЯР.431130.307-04 ТУ
1463УБ13У	H04.16-2B	AEAP.431130.307-04 19

1463УБ11,12,13Р 2101.8-7 7,2 × 10 мм


1463УБ11.12.13У H04.16-2B $9.1 \times 8.7 \, \text{MM}$

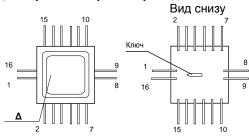


Таблица назначения выводов

Обозначение	Номер вывода		Heavener by the se		
	2101.8-7	H04.16-2B	Назначение вывода		
R _A -	1	3	Вывод Ra"-"		
-IN	2	4	Вход инвертирующий		
+IN	3	5	Вход неинвертирующий		
U _{CC2}	4	8	Отрицательное напряжение питания		
REF	5	10	Вход опорный		
OUT	6	11	Выход		
U _{CC1}	7	13	Положительное напряжение питания		
R _A +	8	14	Вывод Ra"+"		

Цоколевка (вид сверху) микросхем, габаритные чертежи приведены ниже

H04.16-2B

2101.8-7

В маркировке знак чувствительности к статическому электричеству - равносторонний треугольник (Д) совмещен с первым выводом

2016 v2 1

Рижский завод полупроводниковых приборов

Рига, Латвия www.alfarzpp.lv; alfa@alfarzpp.lv

1463УБ11,12,13

Таблица 1 - Электрические параметры при T= 0°C ÷ 70°C

Параметры измеряются при: U_{CC1} = +15 B, U_{CC2} = -15 B, R_L = 2 кОм, $A_{VD nom}$, если не указано особо

Параметры измеряются при: U _{CC1} = +15 I	. 552 - , - L	Букв. обозна- чение	1463УБ11		1463УБ12		1463УБ13	
Наименование параметра, единица измерения	Режимы измерения		не менее	не более	не менее		не менее	не более
			A _{VD nom} =10		A _{VD nom} =100		A _{VD nom} =500	
Максимальное выходное напряжение, В	U _{CC1,2} = ± 4,5 B	U _{O max}	3,3	-3,4	3,3	-3,4	3,3	-3,4
тиаксимальное выходное наприжение, в	U _{CC1,2} = ± 16,5 B	OO max	15,1	-15,3	15,1	-15,3	15,1	-15,3
Напряжение смещения нуля, мкВ	$U_{CC1,2}$ = ± 4,5 B $U_{CC1,2}$ = ± 16,5 B	U _{IO}	-200	200	-200	200	-200	200
Средний температурный коэффициент напряжения смещения нуля, мкВ/°С		αυιο	-1	1	-2	2	-2	2
Диапазон входных напряжений, В	$U_{CC1,2}$ = ± 4,5 B $U_{CC1,2}$ = ± 16,5 B	ΔU_{l}	3,3 15,1	-2,6 -14,6	3,3 15,1	-2,6 -14,6	3,3 15,1	-2,6 -14,6
Напряжение ограничения по опорному входу, В		U _{IREFlim}	13,4	-13,4	13,4	-13,4	13,4	-13,4
Входной ток по опорному входу, мкА	U _{CC1,2} = ± 16,5 B	I _{IREF}	-	60	-	60	-	60
Размах напряжения шума, мкВ	,	U _{npp}	-	0,8	-	0,4	-	0,4
Нормированная ЭДС шума, нВ/√Гц		E _{nN}	-	17	-	17	-	17
Входной ток, нА	U _{CC1,2} = ± 16,5 B, A _{VD max}	II	- 2	2	- 2	2	- 2	2
Разность входных токов, нА	U _{CC1,2} = ± 16,5 B, A _{VD max}	I _{IO}	- 1,0	1,0	- 1,0	1,0	- 1,0	1,0
Относительное отклонение коэффициента усиления дифференциального сигнала по напряжению к номинальному значению, %	$U_{OO} \le \pm 10 \text{MB},$ $U_{Omax(+)} = 10 \text{B},$ $U_{Omax(-)} = -10 \text{B}$	EA _{VD}	-0,15	0,15	-0,15	0,15	-0,5	0,5
Нелинейность относительно прямой, минимизирующей среднеквадратичные отклонения, млн. ⁻¹ ,	U _{OO} ≤±1MB, U _{Omax(+)} =10B, U _{Omax(-)} =-10B	E _{LSQ}	ı	60	-	60	1	100
Относительное отклонение коэффициента усиления опорного напряжения к номинальному значению, %	U _{CC1,2} =±16,5 B, U _{OREFO} ≤±0,1MB U _{IREF(+)} =10B, U _{IREF(-)} =-10B	EA _{VREF}	-0,03	0,03	-0,03	0,03	-	-
Ток потребления по положительному источнику, мА	U _{CC1,2} = ± 16,5 B	I _{CC1}	ı	2,2	-	2,2	ı	2,2
Ток потребления по отрицательному источнику, мА	U _{CC1,2} = ± 16,5 B	I _{CC2}	- 2,2	-	- 2,2	-	- 2,2	-
Коэффициент ослабления синфазных входных напряжений, дБ	U _{CC1,2} = ± 16,5 B	K _{CMR}	93	-	110	-	110	-
Коэффициент влияния нестабильности источников питания на напряжение смещения нуля, дБ	U _{CC1,2} = ± 4,5 B ÷ ± 16,5 B	K _{SVR}	-	-95	-	-95	-	-95
Максимальная скорость нарастания выходного напряжения, В/мкс		SR	0,7	-	0,7	-	0,2	-

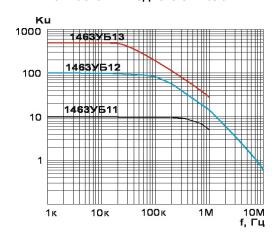
Примечания

Таблица 2 – Предельно-допустимые и предельные режимы эксплуатации микросхем

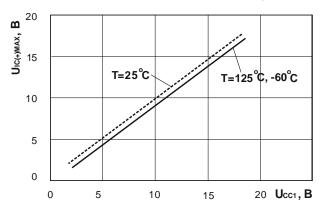
Наименование	Буквен-	Предельно-допустимый режим		Предельн	Время			
параметра режима, единица измерения	ное обозна- чение	не менее	не более	не менее	не более	воздейст. предельн. режима		
Напряжение питания, В	U_{CC1} U_{CC2}	4,5 - 16,5	16,5 - 4,5	- 0,3 - 18,0	18,0 0,3			
Синфазное входное напряжение, В	U _{IC}	U _{CC2} + 2,3 ²⁾	U _{CC1} - 2,3 ²⁾	U _{CC2} 1)	U _{CC1} 1)			
Дифференциальное входное напряжение, В	U _{ID}	См. пр. 2	См. пр. 2	- 5,0	5,0 ^{1),3)}	24 ч.		
Напряжение на опорном входе, В	U _{IREF}	U _{CC2} + 2,0	U _{CC1} - 2,0	U _{CC2} 1)	U _{CC1} 1)			
Сопротивление нагрузки, кОм	R _L	2,0	-	0,001	-			

2

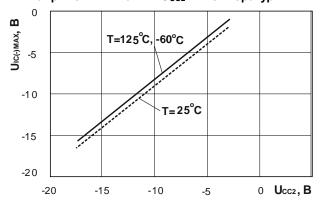
¹⁾ **A**_{VD nom} — номинальное значение коэффициента усиления дифференциального сигнала по напряжению; **A**_{VD max} — режим максимального усиления дифференциального сигнала по напряжению, образующийся при закорачивании выводов **R**_A- и **R**_A+ микросхемы (Рис.1).

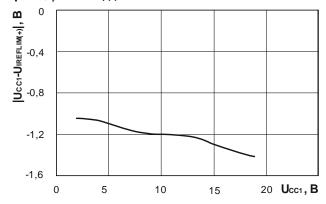

Рижский завод полупроводниковых приборов Рига, Латвия www.alfarzpp.lv; alfa@alfarzpp.lv

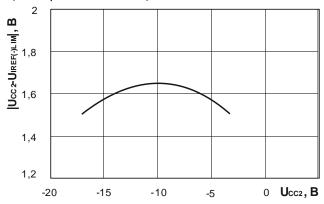
Примечания к Таблице 2

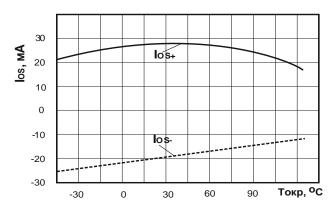

- 1) Абсолютная величина напряжений на любом входе не должна превышать величину напряжения источников питания.
- 2) Сумма синфазной и дифференциальной составляющих входного напряжения, определяемая формулой $U_{IC} \pm (U_{ID} \cdot A_{VD\,prog})$ / 2, для любого момента времени не должна превышать, установленных в таблице, предельно допустимых значений U_{IC} .
- 3) При U_{ID} < 3,0 В допускается эксплуатация без ограничения времени воздействия.
- 4) В примечаниях к таблице 2 под U_{IC} и U_{ID} понимаются абсолютные значения величин этих составляющих входного сигнала, под $A_{VD\ proq}$ фактически установленное значение A_{VD}

Основные типовые зависимости параметров микросхем

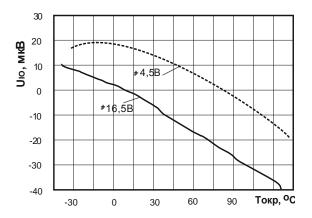

Типовая зависимость коэффициента усиления от частоты входного сигнала

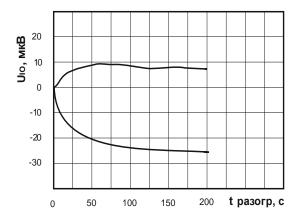

Типовая зависимость максимального входного напряжения $U_{\text{IC}(+)\text{max}}$ положительных значений от напряжения питания U_{CC1} и температуры


Типовая зависимость максимального входного напряжения $U_{\text{IC-}}_{\text{max}}$ отрицательных значений от напряжения питания U_{CC2} и температуры

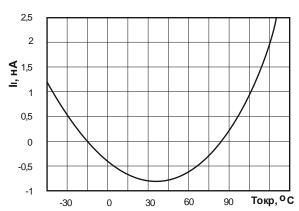

Типовая зависимость напряжения ограничения по опорному входу U_{IREFlim} от напряжения питания U_{CC1} при T_{OKD} = 25 °C, для положительных значений U_{IREF}

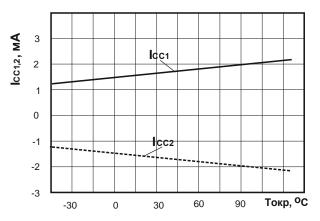
Типовая зависимость напряжения ограничения по опорному входу $U_{IREFlim}$ от напряжения питания U_{CC2} при T_{OKP} = 25 °C, для отрицательных значений U_{IREF}

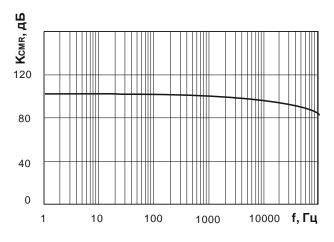

Типовая зависимость тока короткого замыкания I_{OS} от температуры T_{okp}

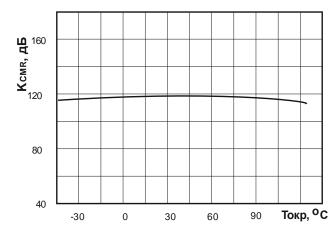

R

Рижский завод полупроводниковых приборов Рига, Латвия www.alfarzpp.lv; alfa@alfarzpp.lv

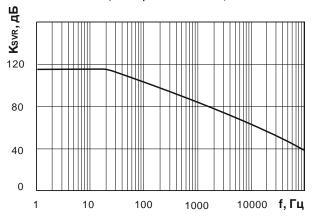

Типовая зависимость напряжения смещения нуля U_{IO} , мкВ от температуры $T_{OKP,OC}$ при $U_{CC1,2}$ =±4,5В и $U_{CC1,2}$ =±16,5 В

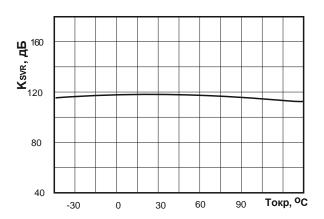

Область изменения напряжения смещения нуля U_{IO} от времени самопрогрева t при $U_{CC1,2}$ = \pm 15,0 В (границы 80 % разброса)


Типовая зависимость входного тока I_{i} , нА от температуры T_{OKP} ,оС при $U_{CC1,2}$ = ± 16,5 В

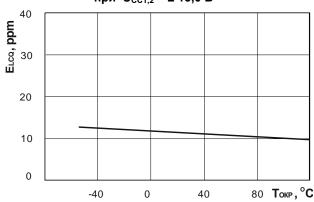

Типовая зависимость токов потребления $I_{CC1,2}$ от температуры $T_{OKP,OC}$ при $U_{CC1,2}$ = ± 16,5 B

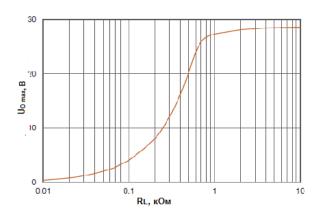
Типовая зависимость коэффициента ослабления синфазного входного напряжения K_{CMR} от частоты f при t_{okp} = 25°C и $U_{CC1,2}$ = ± 16,5 B

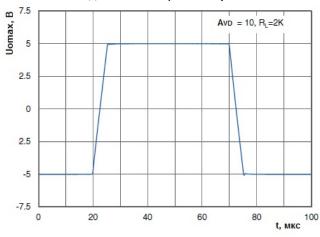

Типовая зависимость коэффициента ослабления синфазного входного напряжения K_{CMR} от температуры T_{OKP} , оС при $U_{CC1,2}$ = \pm 16,5 B

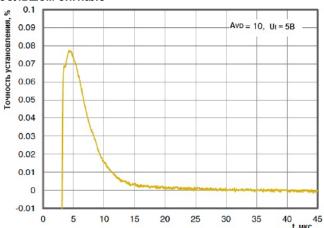

Рижский завод полупроводниковых приборов

Рига, Латвия www.alfarzpp.lv; alfa@alfarzpp.lv

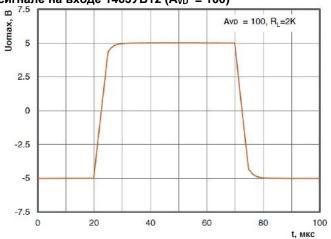

Типовая зависимость коэффициента влияния нестабильности источников питания K_{SVR} от частоты f при $T_{\text{окр}}$ = 25°C и $U_{\text{CC1},2}$ = ± 16,5 В

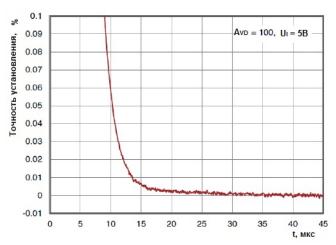

Типовая зависимость коэффициента влияния нестабильности источников питания K_{SVR} от температуры $T_{\text{окр}}$ при $U_{\text{CC1,2}} = \pm 16,5 \text{ B}$


Типовая зависимость нелинейности относительно прямой, минимизирующей среднеквадратичные отклонения E_{LSQ} от температуры T_{окр},оС при $U_{CC1,2} = \pm 15,0 B$

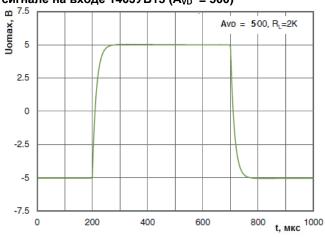

Типовая зависимость максимального выходного напряжения Uomax от сопротивления нагрузки

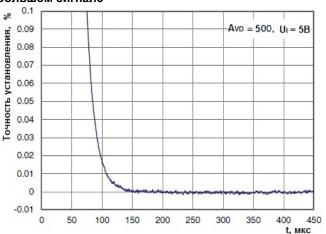
Типовой выходой сигнал при большом импульсном сигнале на входе 1463УБ11 (A_{VD} = 10)

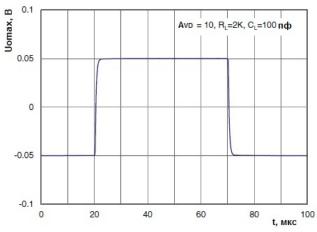

Время установления 1463УБ11 (A_{VD} = 10) при большом сигнале

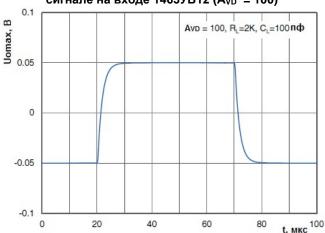

Рижский завод полупроводниковых приборов

Рига, Латвия www.alfarzpp.lv; alfa@alfarzpp.lv

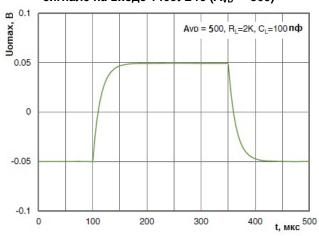

Типовой выходой сигнал при большом импульсном сигнале на входе 1463УБ12 (A_{VD} = 100)

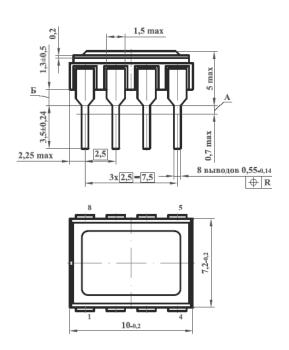

Время установления 1463УБ12 (A_{VD} = 100) при большом сигнале


Типовой выходой сигнал при большом импульсном сигнале на входе 1463УБ13 (A_{VD} = 500)

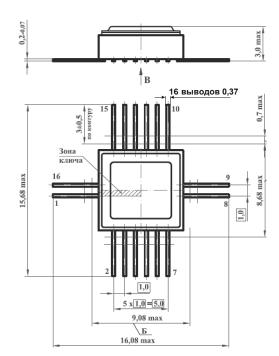

Время установления 1463УБ13 (A_{VD} = 500) при большом сигнале

Типовой выходой сигнал при малом импульсном сигнале на входе 1463УБ11 (A_{VD} = 10)


Типовой выходой сигнал при малом импульсном сигнале на входе 1463УБ12 (A_{VD} = 100)


R

Рижский завод полупроводниковых приборов Рига, Латвия www.alfarzpp.lv; alfa@alfarzpp.lv


Типовой выходой сигнал при малом импульсном сигнале на входе 1463УБ13 (A_{VD} = 500)

Габаритные чертежи используемых металлокерамических корпусов

Корпус 2101.8-7, размеры в мм

Корпус Н04.16-2В, размеры в мм