
ЭЛЕКТРОННЫЕ КОМПОНЕНТЫ, ПРИБОРЫ И МАТЕРИАЛЫ

СОДЕРЖАНИЕ

Конденсаторы

```
Керамические конденсаторы
   K10-67
   K10-69
   K10-71
   K10-72
   K10-79
   K10-80
   К10-82 - новая разработка
   К10-83 - новая разработка
   K15-20
   K15-33
   K15-37
Конденсаторы с оксидным диэлектриком
   K52-7A-1
   K52-13
   К52-23 - новая разработка
   K53-46, OCM
   K53-56, OCM
   K53-56A, OCM
   K53-67
Конденсаторы с двойным электрическим слоем (ионисторы)
   К58-24 - новая разработка
Конденсаторы с органическим диэлектриком
 Конденсаторы полиэтилентерефталатные
   K73-11
   K73-14M
   K74-7
   K73-17
   К73-21 б, г
   К73-24 в
   K73-31
   К73-43 а, б, в
   K73-50
   K73-56
   K73-57
   К73-76 – новая разработка
  Конденсаторы полипропиленовые
   K78-2
   К78-5
   K78-10
   К78-11
   К78-12
   K78-19
 Конденсаторы с комбинированным диэлектриком
   K75-15
   К75-29 Б
   K75-59
   K75-62
   K75-63
```

K75-81

```
Конденсаторы переменной ёмкости. Вариконды
        KH1-8
        КН1-9 - новая разработка
Керамические помехоподавляющие фильтры
        K10-81
       Б24
       Б25
       Б26
Нелинейные полупроводниковые резисторы
    Терморезисторы с отрицательным ТКС
       TP-1
       TP-2
       TP-4
       TP-15
        ТР-16 - новая разработка
    Терморезисторы с положительным ТКС (позисторы)
       TPΠ-19
       TPΠ-24, 24M
       TPΠ-27
        ТРП-29 - новая разработка
    Варисторы
       BP-4-1
       BP-4-2
       ВР-9 а, б, в
       BP-10
       BP-11
       BP-12
        ВР-13 – новая разработка
        ВР-14 - новая разработка
Потенциометры прецизионные непроволочные
       ПТ1-2 а, б
       ПТ1-4
       ПТ1-6 а, б
       ПТ1-7В
       3P1-1
Фотоэлектрические и оптоэлектронные приборы
Фотоэлектрические полупроводниковые приемники излучения (ФЭПП)
    Фоторезисторные (ФЭПП) для ближней и средней ИК-области спектра
       ФР 622, ФР 622Т
       ФР 623, ФР 623Т
       ФР 624, ФР 624Т
    Фотогальванические (ФЭПП) для средней ИК-области спектра
       ФЭ 722; ФЭ 722Т
       ФЭ 723; ФЭ 723Т
       ФЭ 724; ФЭ 724Т
```

Фотоприемные устройства (ФПУ) для ближней и средней ИК-области спектра

Фотоприемные устройства (ФПУ)

Полупроводниковые излучатели для ближней и средней ИК-области спектра

Полупроводниковые излучатели для ближней ИК-области спектра (0,8 – 0,95 мкм)
АЛ147А,
АЛ147А1

Полупроводниковые излучатели для ближней и средней ИК-области спектра (2 – 4,5 мкм)

Интерференционные покрытия

Приборы систем безопасности

Каталог «Приборы систем безопасности»

Извещатели пожарные пламени многодиапазонные «НАБАТ»

НАБАТ 1 (ИПЗ32-1/1) НАБАТ 1М (ИПЗ32-1/1М) НАБАТ 2 (ИПЗ32-1/2) НАБАТ 3 (ИПЗ32-1/3) НАБАТ 5М (ИПЗ30-5М-1) НАБАТ A (ИПЗ30-6/2-1) НАБАТ ИК/УФ (ИПЗ29/330-3-1)

Извещатели пламени по спецзаказу для особых условий эксплуатации

Блок искрозащиты на стабилитронах «БИС-1» Сигнализатор наличия пламени оптоэлектронный СНП ОЭ-1 Инфракрасные пожарные преобразователи ИПП-2А, ИПП-2Б Прибор приемно-конторольный пожарный «Колокол-1»

Микроволновая керамика. Материалы, изделия

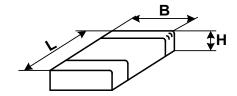
Устройства селекции УС-1

Толстопленочная технология. Материалы. Изделия

Композиционные пасты
Электропроводящие клеи (ЭПК)
Постоянные толстопленочные резисторы
Высокоомные постоянные ЧИП-резисторы Р1-73
Плоские толстопленочные резисторы повышенной мощности (пленочные нагревательные элементы) (ПНЭ)

Эпоксидные компаунды и клеи

Заливочные эпоксидные компаунды Покровные эпоксидные компаунды Клеи эпоксидные "ГИРЛЕН"


Флюсы. Паяльные пасты

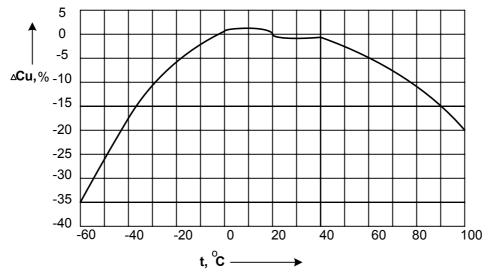
Тип	Группа ТСЕ	Номинальное напряжение U _{ном,} В	Номинальная емкость С _{ном}					
	Общего назначения							
К10-67 "б", "в"	0-67 "б", "в" МП0, Н30, Н50, Н90 25; 50; 100; 250; 500 10							
К10-69 "б", "в"	МП0, Н30, Н90	25; 50; 100; 250; 500	1,0 пФ 3,3 мкФ					
K10-79	МП0, Н30, Н90	10; 16; 25; 50; 100; 250; 500	0,47 пФ 100 мкФ					
K10-80	МПО	100 630	0,47пФ 5100 пФ					
К10-82 <u>НОВАЯ</u> РАЗРАБОТКА	H20; H90	50; 100; 250; 500; 630	0,01022 мкФ					
К10-83 <u>НОВАЯ</u> <u>РАЗРАБОТКА</u>	МП0, Н30	16; 25; 50 16; 25; 50; 100; 250; 500	1 пФ 0,024 мкФ 5600 пФ 4,7 мкФ					
K10-72	M750; M1500; M2200; M3300; H30; H50; H70; H90	100; 250	22+33 2400+5100 пФ					
К15-20 "б", "в"	MΠ0, H50	1600; 2000; 6300; 3000; 4000; 5000	150 пФ 0,068 мкФ					
K15-33	МПО	1000; 1600; 2000; 2500; 3000; 4000; 6300	1 5100 пФ					
K15-37	МПО	1600; 2500; 4000	1 1800 пФ					
	Для СВЧ-диапазона частот							
K10-71	МП0; М1500; H70; H90	100	0,56 3300 пФ					

Технические условия: АЖЯР.673511.003

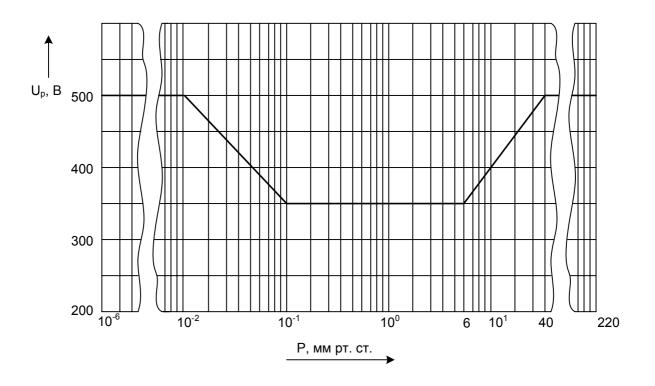
Предназначены для работы в цепях постоянного, переменного и пульсирующего токов и в импульсных режимах. Новая серия конденсаторов для вторичных источников питания с широким диапазоном напряжений и емкостей.

Конструкция:

Группа ТКЕ	H50
Номинальная емкость	680 пФ 33 мкФ
Номинальное напряжение, В	25; 50; 100; 250; 500
Допуск по емкости, %	±20; +50/-20
Ряд емкостей	E6
Тангенс угла потерь, $tg\delta$, не более	0,035
Сопротивление изоляции, не менее, МОм (при $C_{\text{ном}} \le 0.025$ мкФ)	4000
Постоянная времени не менее, МОм·мкФ (при С _{ном} >0,025 мкФ)	100
Интервал рабочих температур, °С	-60 + 100
Изменение емкости в интервале рабочих температур, %	±50
Климатическое исполнение*	-
Наработка, час	25 000
Срок сохраняемости, лет	25

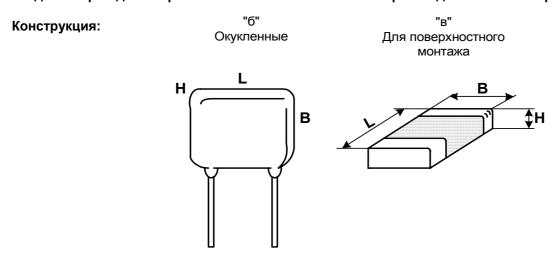

^{*}Конденсаторы применяют только в герметичных невскрываемых объемах или в объемах, вскрываемых в помещениях с искусственно регулируемыми климатическими условиями.

Обозначение при заказе: конденсатор К10-67-50 В - 0,47 мкФ±20% - H50 АЖЯР.673511.003


Номинальное	Номинальная	Допускаемая	Pa	азмеры, м	1M	Масса,
напряжение, В	емкость	реактивная мощность, ВАр	L	В	Н _{макс}	Γ
	0,47; 0,68 мкФ	0,3	4,5	3,2	1,8	0,19
	12,2 мкФ		5,7	5	1,0	0,35
	3,3 мкФ		8	6	2,1	1,1
25	4,7; 6,8 мкФ	0,5	10	8	2,3	1,6
	10 мкФ	0,3	12	10		3,8
	15 мкФ		16	12	2,5	7
	22; 33 мкФ		24	16		11
	0,22; 0,33 мкФ	0,5	4,5	3,2	2,2	0,2
	0,471 мкФ	0,5	5,7	5	۷,۷	0,4
	1,5; 2,2 мкФ		8	6	2,5	1,2
50	3,3 мкФ	1,0	10	8		1,8
	4,7; 6,8 мкФ		12	10	2,8	4
	10 мкФ	1,5	16	12	2,0	8
	15; 22 мкФ	2,0	24	16		12
	0,1; 0,15 мкФ	0,5	4,5	3,2	3,0	0,25
	0,22; 0,33 мкФ	0,5	5,7	5		0,5
	0,47; 0,68 мкФ	1,0	8	6		1,5
100	1; 1,5 мкФ	- 1,5	10	8	3,5	2
	2,2 мкФ		12	10		4,5
	3,3 мкФ	2,0	16	12		10
	4,7 мкФ	2,0	24	16		15
	0,0220,068 мкФ	0.5	4,5	3,2	3,0	0,25
	0,1; 0,15 мкФ	0,5	5,7	5		0,5
	0,22; 0,33 мкФ	1,0	8	6		1,5
250	0,47 мкФ	1.5	10	8		2
	0,68 мкФ	1,5	12	10	2.5	4,5
	1 мкФ	2.0	16	12	3,5	10
	1,5; 2,2 мкФ	2,0	24	16		15
	680 пФ0,01 мкФ	0.5	4,5	3,2		0,25
	0,015; 0,022 мкФ	0,5	5,7	5	3,0	0,5
	0,033; 0,047 мкФ	1,0	8	6		1,5
500	0,068; 0,1 мкФ	4.5	10	8		2
	0,15 мкФ	1,5	12	10	0 -	4,5
	0,22; 0,33 мкФ	2.0	16	12	3,5	10
	0,47 мкФ	2,0	24	16		15

Промежуточные значения номинальных емкостей по ряду Е6 по ГОСТ 28884-90

Характер зависимости емкости от температуры



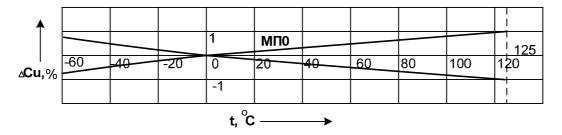
 ΔC_{u} – относительное изменение емкости

Технические условия: АДПК.673511.015 ТУ

Предназначены для эксплуатации в качестве встроенных элементов внутри комплектных изделий в цепях постоянного, пульсирующего, переменного токов и в импульсных режимах. Новая серия конденсаторов для вторичных источников питания с широким диапазоном напряжений и емкостей.

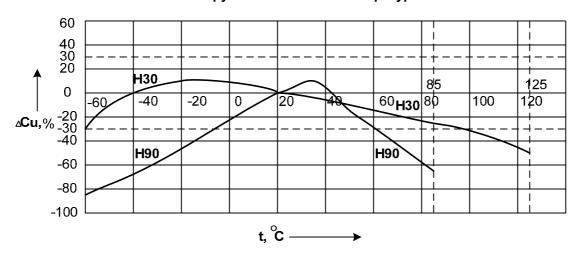
Группа ТКЕ		МПО Н30		H90	
Номинальная емкость		10 пФ0,91 мкФ	680 пФ33 мкФ	0,47 пФ68 мкФ	
Номинальное наг	іряжение, В	50; 100; 250; 500	25; 50; 100; 250; 500	25; 50	
Допуск по емкост	и, %	±5; ±10; ±20	±20; +50/-20	+80/-20	
Ряд емкостей		E24	E6		
Тангенс угла поте не более	ерь, tgδ,	- для С _{ном} ≤50 пФ: 1,5(150/С _{ном} +7)·10 ⁻⁴ - для С _{ном} >50 пФ: 0,0015	0,035		
Сопротивление и не менее, МОм	золяции,	10 000 (для С _{ном} ≤ 0,01 мкФ)	4000 (для С _{ном} ≤ 0,025 мкФ)		
Постоянная врем не менее, МОм·м		100 (для С _{ном} > 0,01 мкФ)	100 (для С _{ном} >0,025 мкФ)		
Интервал рабочи	х температур, °С	-60 +125	-60 + 85		
TKE, 1/°C, 10 ⁻⁶	вариант "б"	для С _{ном} < 47 пФ: 0 ⁺¹²⁰ ₋₄₀ для С _{ном} ≥47 пФ: 0±30	_		
	вариант "в"	0±30	1		
Изменение емкос рабочих темпера		±1	±30	±90	
Допускаемая реа мощность, ВАр	ктивная	20	0,5		
Климатическое варианты "б"		В 3.1 по ГОСТ 15150-69			
исполнение	вариант "в" *	-			
Наработка, час		40 000			
Срок сохраняемо	сти, лет	12			

^{*} Конденсаторы варианта "в" применяют только в герметичных невскрываемых объемах или в объемах, вскрываемых в помещениях с искусственно регулируемыми климатическими условиями.


Обозначение при заказе: конденсатор К10-67б – 50 В – 1,5 мкФ±20% – Н30 АДПК. 673511. 015 ТУ

ГИРИКОНД ___

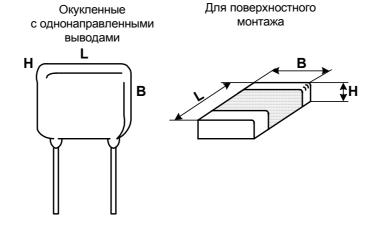
Группа ТКЕ	U _{ном} , В	Номинальная емкость C _{ном}						
	50	9100 пФ 0,016 мкФ	0,018 0,043 мкФ	0,047 0,1 мкФ	0,11 0,16 мкФ	0,18 0,27 мкФ	0,3 0,47 мкФ	0,51 0,91 мкФ
МПО	100	3000 8200 пФ	9100 пФ 0,02 мкФ	0,022 0,047 мкФ	0,051 0,082 мкФ	0,091 0,12 мкФ	0,13 0,22 мкФ	0,24 0,43 мкФ
WII 10	250	750 2700 пФ	3000 8200 пФ	9100 пФ 0,016 мкФ	0,018 0,03 мкФ	0,033 0,051 мкФ	0,056 0,082 мкФ	0,091 0,16 мкФ
	500	10 680 пФ	750 1800 пФ	2000 3900 пФ	4300 7500 пФ	8200 пФ 0,011 мкФ	0,012 0,02 мкФ	0,022 0,039 мкФ
	25	0,47; 0,68 мкФ	1,0; 1,5 мкФ	2,2; 3,3 мкФ	4,7; 6,8 мкФ	10 мкФ	15 мкФ	22; 33 мкФ
	50	0,22; 0,33 мкФ	0,47 1,0 мкФ	1,5; 2,2 мкФ	3,3 мкФ	4,7; 6,8 мкФ	10 мкФ	15; 22 мкФ
H30	100	0,1 мкФ	0,15 0,33 мкФ	0,47; 0,68 мкФ	1,0; 1,5 мкФ	2,2 мкФ	3,3 мкФ	4,7 мкФ
	250	0,022 0,047 мкФ	0,068 0,1 мкФ	0,15 0,33 мкФ	0,47 мкФ	0,68 мкФ	1,0 мкФ	1,5; 2,2 мкФ
	500	680 пФ 0,01 мкФ	0,015; 0,022 мкФ	0,033; 0,047 мкФ	0,068; 0,1 мкФ	0,15 мкФ	0,22; 0,33 мкФ	0,47 мкФ
H90	25	1,0 мкФ	1,5 3,3 мкФ	4,7; 6,8 мкФ	10 мкФ	15; 22 мкФ	33 мкФ	47; 68 мкФ
1100	50	0,47; 0,68 мк Ф	1,0; 1,5 мкФ	2,2; 3,3 мкФ	4,7; 6,8 мкФ	10 мкФ	15 мкФ	22; 33 мкФ
Вариант испол- нения		Габаритные размеры, мм						
"ნ"	LxBxH	7,5x5,0x5,3	9,0x7,1x5,3	12x9,5x6,0	14x11x6,0	16x14x8,0	20x16x8,0	28x20x8,0
	A±1	5,0	5,0	7,5	10	12,5	17,5	25
"B"	LxBxH	4,5x3,2x2,5	5,7x5,0x3,0	8,0x6,0x4,0	10x8,0x4,0	12x10x4,0	16x12x5,0	24x16x6,0


Промежуточные значения номинальных емкостей соответствуют ряду E24 для группы МП0 и ряду E6 для групп H30 и H90 по ГОСТ 28884-90

Характер зависимости емкости конденсаторов группы МП0 от температуры

 ΔC_u – относительное изменение емкости

Характер зависимости емкости конденсаторов групп H30 и H90 от температуры



 ΔC_{u} – относительное изменение емкости

Технические условия: АЖЯР.673511.002 ТУ

Наиболее перспективная серия конденсаторов для монтажа на поверхность (вар. «в») и печатного монтажа (вар. «б»), с высокими удельными характеристиками и габаритными размерами по международной шкале (МЭК). Предназначены для замены конденсаторов К10-17, К10-50 и К10-47 (частично).

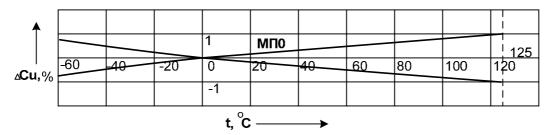
Конструкция:

Группа ТКЕ		МП0	МПО Н30 Н90		
Номинальная емко	СТЬ	1 пФ0,039 мкФ	100 пФ1,5 мкФ	1000 пФ3,3 мкФ	
Номинальное напр	яжение, В	50; 100; 250; 500	25; 50; 100; 250; 500	25; 50	
Допуск по емкости,	%	±0,5 пФ для С _{ном} <10 пФ ±5; ±10; ±20 для С _{ном} ≥10 пФ	±20; +50/-20	+80/-20	
Ряд емкостей		E24	E6		
Тангенс угла потерь, tgδ, не более		- для С _{ном} ≤10 пФ: не нормируется - для 10 пФ<С _{ном} ≤50 пФ: 1,5(150/С _{ном} +7)·10 ⁻⁴ - для С _{ном} >50 пФ: 0,0015	0,035		
Сопротивление изоляции, не менее, МОм (для $C_{\text{Hom}} \le 0,025 \text{ мк}\Phi$)		10 000	4000		
Постоянная времен МОм·мкФ (для С _{ном}		250	100		
Интервал рабочих	температур, °С	-60 +12 5	-60 + 85		
TKE, 1/°C, 10 ⁻⁶	вариант "б"	- для С _{ном} ≤47 пФ: 0 ⁺¹²⁰ ₋₄₀ - для С _{ном} >47 пФ: 0±30			
TRE, 17 C, 10	вариант "в"	- для С _{ном} ≤20 пФ: 0 ⁺¹²⁰ ₋₄₀ - для С _{ном} >20 пФ: 0±30	_		
Изменение емкости в интервале рабочих температур, %		±1	±30	±90	
Климатическое	вариант "б"	В	по ГОСТ 20.39.404-81		
исполнение вариант "в" *		_			
Минимальная наработка, час		25 000			
Срок сохраняемост	и, лет	25			

^{*}Конденсаторы варианта "в" применяют только в герметичных невскрываемых объемах или в объемах, вскрываемых в помещениях с искусственно регулируемыми климатическими условиями.

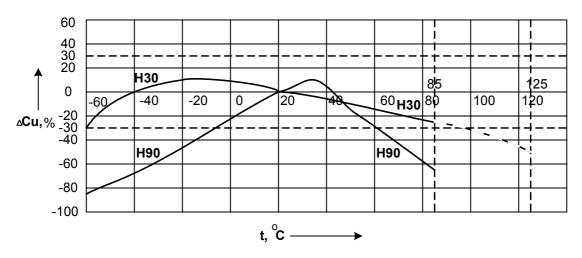
Примечание: емкость конденсаторов варианта "б" начинается с 10 пФ.

Обозначение при заказе: конденсатор К10-696 – H30 - 25 B – 0,15 мкФ±20% – АЖЯР. 673511. 002 ТУ

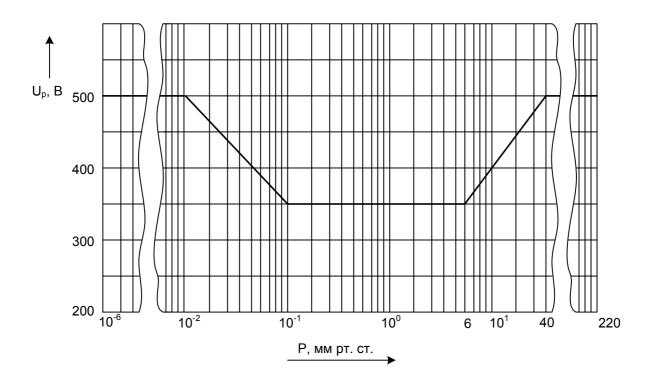

ГИРИКОНД ___

Группа ТКЕ	U _{ном} , В	Номинальная емкость, С _{ном}					
	50	1,01200 пФ	1,03900 пФ	4300 8200 пФ	9100 пФ 0,015 мкФ	0,016 0,039 мкФ	
МПО	100	1,0470 пФ	1,01500 пФ	1600 3300 пФ	3600 8200 пФ	9100 пФ 0,022 мкФ	
WILIO	250	-	1,0750 пФ	820 1500 пФ	1600 3300 пФ	3600 7500 пФ	
	500	-	1,0200 пФ	220 360 пФ	390 820 пФ	910 2000 пФ	
	25	100 пФ 0,068 мкФ	100 пФ 0,15 мкФ	0,22 0,47 мкФ	0,68; 1,0 мкФ	1,5 мкФ	
	50	100 пФ 0,015 мкФ	100 пФ 0,047 мкФ	0,068 0,15 мкФ	0,22; 0,33 мкФ	0,47 1,0 мкФ	
H30	100	-	1000 пФ 0,047 мкФ	0,068 0,1 мкФ	0,15 мкФ	0,22; 0,33 мкФ	
	250	-	1000 пФ 0,022 мкФ	0,033; 0,047 мкФ	0,068 мкФ	0,1 мкФ	
	500	1	1000 4700 пФ	6800 пФ 0,01 мкФ	0,015; 0,022 мкФ	0,033; 0,047 мкФ	
H90	25	1000 пФ 0,1 мкФ	1000 пФ 0,33 мкФ	0,47; 0,68 мкФ	1,0; 1,5 мкФ	2,2; 3,3 мкФ	
1100	50	1000 пФ 0,047 мкФ	1000 пФ 0,15 мкФ	0,22; 0,33 мкФ	0,47; 0,68 мкФ	1,02,2 мкФ	
Вариант исполнения		Габаритные размеры, мм					
"ნ"	LxBxH _{max}	-	5,6x3,0x3,0	5,6x4,5x4,0	7,1x5,0x3,0	8,5x7,1x4,5	
	A±1	_	5,0	5,0	5,0	5,0	
	LxBxH _{max}	2,0x1,25x1,0	3,2x1,6x1,6	3,2x2,5x1,8	4,5x3,2x1,8	5,7x5,0x2,2	
"в"	Международный код	0805 (2012M)	1206 (3216M)	1210 (3225M)	1812 (4532M)	2220 (5750M)	

Примечание: емкость конденсаторов варианта "б" начинается с 10 пФ.


Промежуточные значения номинальных емкостей соответствуют ряду E24 для группы МП0 и ряду E6 для групп H30 и H90 по ГОСТ 28884-90

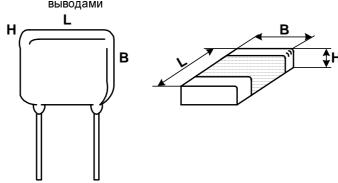
Характер зависимости емкости конденсаторов группы МП0 от температуры



 ΔC_{u} – относительное изменение емкости

Характер зависимости емкости конденсаторов групп H30 и H90 от температуры

 ΔC_{u} – относительное изменение емкости



Технические условия: АЖЯР.673511.002 ТУ («5») Категория качества «ВП»

Наиболее перспективная серия конденсаторов для монтажа на поверхность (вар. «в») и печатного монтажа (вар. «б»), с высокими удельными характеристиками и габаритными размерами по международной шкале (МЭК). Предназначены для замены конденсаторов К10-17, К10-50 и К10-47 (частично).

Окукленные Для поверхностного с однонаправленными монтажа выводами

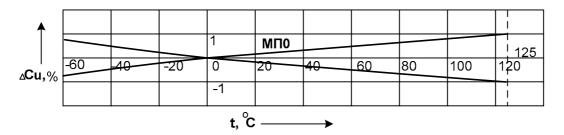
... L

Группа ТКЕ		МПО	H30	H90	
Номинальная емко	СТЬ	1 пФ0,039 мкФ	100 пФ1,5 мкФ	1000 пФ3,3 мкФ	
Номинальное напря	яжение, В	50; 100; 250; 500	25; 50; 100; 250; 500	25; 50	
Допуск по емкости,	%	±0,5 пФ для С _{ном} <10 пФ ±5; ±10; ±20 для С _{ном} ≥10 пФ	±20; +50/-20	+80/-20	
Ряд емкостей		E24	E6		
Тангенс угла потерь, tgδ, не более		- для С _{ном} ≤10 пФ: не нормируется - для 10 пФ<С _{ном} ≤50 пФ: 1,5(150/С _{ном} +7)·10 ⁻⁴ - для С _{ном} >50 пФ: 0,0015	0,035		
Сопротивление изоляции, не менее, МОм (для С _{ном} ≤ 0,025 мкФ)		10 000	4000		
Постоянная времен МОм-мкФ (для С _{ном}		250	100		
Интервал рабочих	температур, °С	-60 + 125	-60 +85		
TKE, 1/°C, 10 ⁻⁶	вариант "б"	- для С _{ном} ≤47 пФ: 0 ⁺¹²⁰ ₋₄₀ - для С _{ном} >47 пФ: 0±30			
TRE, 17 G, 10	вариант "в"	- для С _{ном} ≤20 пФ: 0 ⁺¹²⁰ ₋₄₀ - для С _{ном} >20 пФ: 0±30	_		
Изменение емкости в интервале рабочих температур, %		±1	±30	±90	
Климатическое	вариант "б"	В по ГОСТ 20.39.404-81			
исполнение	вариант "в" *	_			
Минимальная нара	ботка, час	25 000			
Срок сохраняемост	и, лет	25			

^{*}Конденсаторы варианта "в" применяют только в герметичных невскрываемых объемах или в объемах, вскрываемых в помещениях с искусственно регулируемыми климатическими условиями.

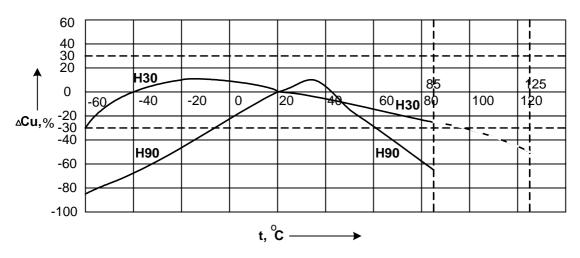
Примечание: емкость конденсаторов варианта "б" начинается с 10 пФ.

Обозначение при заказе: конденсатор К10-696 — H30 - 25 B — 0,15 мкФ±20% — АЖЯР. 673511. 002 ТУ

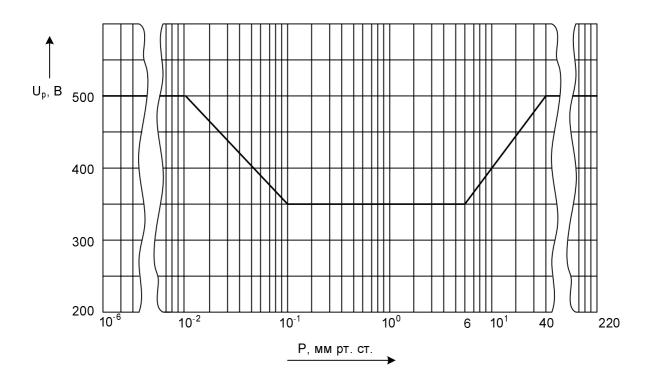

ГИРИКОНД ___

Группа ТКЕ	U _{ном} , В	Номинальная емкость, С _{ном}				
	50	1,01200 пФ	1,03900 пФ	4300 8200 пФ	9100 пФ 0,015 мкФ	0,016 0,039 мкФ
МПО	100	1,0470 пФ	1,01500 пФ	1600 3300 пФ	3600 8200 пФ	9100 пФ 0,022 мкФ
IVIII IO	250	1	1,0750 пФ	820 1500 пФ	1600 3300 пФ	3600 7500 пФ
	500	1	1,0200 пФ	220 360 пФ	390 820 пФ	910 2000 пФ
	25	100 пФ 0,068 мкФ	100 пФ 0,15 мкФ	0,22 0,47 мкФ	0,68; 1,0 мкФ	1,5 мкФ
	50	100 пФ 0,015 мкФ	100 пФ 0,047 мкФ	0,068 0,15 мкФ	0,22; 0,33 мкФ	0,47 1,0 мкФ
H30	100	ı	1000 пФ 0,047 мкФ	0,068 0,1 мкФ	0,15 мкФ	0,22; 0,33 мкФ
	250	-	1000 пФ 0,022 мкФ	0,033; 0,047 мкФ	0,068 мкФ	0,1 мкФ
	500	ı	1000 4700 пФ	6800 пФ 0,01 мкФ	0,015; 0,022 мкФ	0,033; 0,047 мкФ
H90	25	1000 пФ 0,1 мкФ	1000 пФ 0,33 мкФ	0,47; 0,68 мкФ	1,0; 1,5 мкФ	2,2; 3,3 мкФ
1130	50	1000 пФ 0,047 мкФ	1000 пФ 0,15 мкФ	0,22; 0,33 мкФ	0,47; 0,68 мкФ	1,02,2 мкФ
Вариант исполнения		Габаритные размеры, мм				
"ნ"	LxBxH _{max}	_	5,6x3,0x3,0	5,6x4,5x4,0	7,1x5,0x3,0	8,5x7,1x4,5
	A±1		5,0	5,0	5,0	5,0
	LxBxH _{max}	2,0x1,25x1,0	3,2x1,6x1,6	3,2x2,5x1,8	4,5x3,2x1,8	5,7x5,0x2,2
"в"	Международный код	0805 (2012M)	1206 (3216M)	1210 (3225M)	1812 (4532M)	2220 (5750M)

Примечание: емкость конденсаторов варианта "б" начинается с 10 пФ.

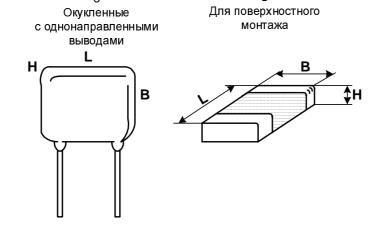

Промежуточные значения номинальных емкостей соответствуют ряду E24 для группы МПО и ряду E6 для групп H30 и H90 по ГОСТ 28884-90

Характер зависимости емкости конденсаторов группы МПО от температуры



 ΔC_u — относительное изменение емкости

Характер зависимости емкости конденсаторов групп H30 и H90 от температуры


 ΔC_u — относительное изменение емкости

Технические условия: АДПК.673511.004 ТУ («1»)

Наиболее перспективная серия конденсаторов для монтажа на поверхность (вар. «в») и печатного монтажа (вар. «б»), с высокими удельными характеристиками и габаритными размерами по международной шкале (МЭК). Предназначены для замены конденсаторов К10-17, К10-50 и К10-47 (частично).

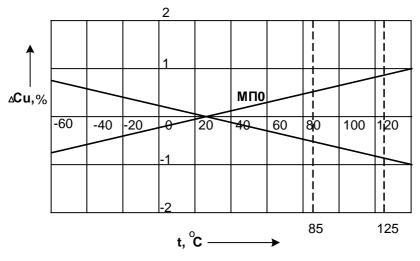
Конструкция:

Группа ТКЕ		МПО	H30 H90				
Номинальная емн	ОСТЬ	1 пФ0,033 мкФ	100 пФ1,5 мкФ 1000 пФ				
Номинальное наг	іряжение, В	50; 100; 250; 500	25; 50; 100; 250; 500	25; 50			
Допуск по емкост	и, %	±0,5 пФ для С _{ном} <10 пФ ±5; ±10; ±20 для С _{ном} ≥10 пФ	±20; +50/-20	+80/-20			
Ряд емкостей		E24	E	6			
- для С _{ном} ≤5 пФ: не нормируется Тангенс угла потерь, tgδ, не более - для 5 пФ <c<sub>ном≤50 пФ: 1,5(150/С_{ном}+7)·10⁻⁴ - для С_{ном}>50 пФ: 0,0015</c<sub>			0,035				
Сопротивление и не менее, МОм	золяции,	10 000 (для С _{ном} ≤ 0,01 мкФ)	4000 (для С _{ном} ≤ 0,025 мкФ)			4000 (для С _{ном} ≤ 0,025 мкФ)	
Постоянная врем не менее, МОм·м		100 (для С _{ном} > 0,01 мкФ)	100 (для С _{ном} >0,025 мкФ)				
Интервал рабочи	х температур, °С	-60 +125	-60 +85				
TKE, 1/°C, 10 ⁻⁶	вариант "б"	для С _{ном} <47 пФ: 0 ⁺¹²⁰ -40 для С _{ном} ≥47 пФ: 0±30	-	-			
	вариант "в"	0±30					
Изменение емкости в интервале рабочих температур, %		±1	±30	±90			
Климатическое	вариант "б"	В 3.1 по ГОСТ 15150-69					
исполнение	вариант "в" *	-					
Наработка, час		40 000					
Срок сохраняемо	сти, лет	12					

^{*}Конденсаторы варианта "в" применяют только в герметичных невскрываемых объемах или в объемах, вскрываемых в помещениях с искусственно регулируемыми климатическими условиями.

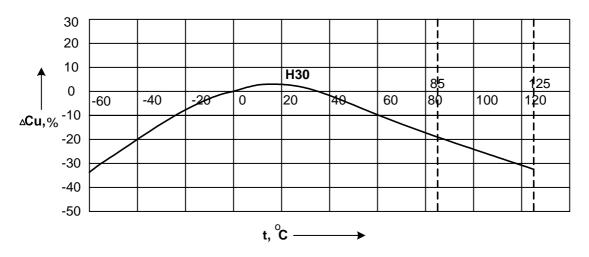
Обозначение при заказе: конденсатор К10-69в – МП0 - 50 В – 3900 пФ±5% - (1260) - АДПК. 673511. 004 ТУ

ГИРИКОНД __

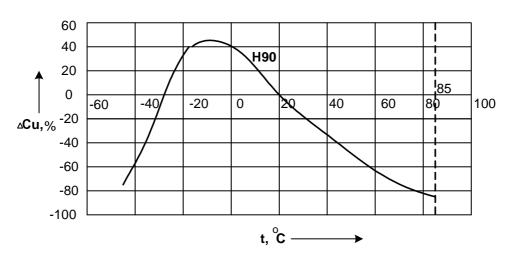

Примечание: емкость конденсаторов варианта "б" начинается с 10 пФ.

Группа ТКЕ	U _{ном} , В	Номинальная емкость, С _{ном}				
	50	1,01200 пФ	1,03900 пФ	43008200 пФ	9100 пФ 0,015 мкФ	0,016 0,033 мкФ
МПО	100	1,0470 пФ	1,01500 пФ	16003300 пФ	36008200 пФ	9100 пФ 0,012 мкФ
	250	-	1,01000 пФ	11002000 пФ	22003600 пФ	39006800 пФ
	500	-	1,0270 пФ	300560 пФ	6201000 пФ	11002000 пФ
	25	100 пФ 0,068 мкФ	100 пФ 0,15 мкФ	0,220,47 мкФ*	0,47; 1,0 мкФ*	1,0; 1,5 мкФ
	50	100 пФ 0,015 мкФ	100 пФ 0,047 мкФ	0,068 0,15 мкФ	0,22; 0,33 мкФ	0,47; 0,68 мкФ
H30	100	-	1000 пФ 0,022 мкФ	0,033 0,068 мкФ	0,1; 0,15 мкФ	0,22; 0,33 мкФ
	250	-	1000 пФ 0,01 мкФ	0,015; 0,033 мкФ	0,047; 0,068 мкФ	0,1; 0,15 мкФ
	500	-	10003300 пФ	4700 пФ 0,01 мкФ	0,015; 0,022 мкФ	0,033; 0,047 мкФ
H90	25	1000 пФ 0,1 мкФ	1000 пФ 0,33 мкФ	0,47; 0,68 мкФ	1,0; 1,5 мкФ	2,2; 3,3 мкФ
1130	50	1000 пФ 0,047 мкФ	1000 пФ 0,15 мкФ	0,22; 0,33 мкФ	0,47; 0,68 мкФ	1,01,5 мкФ
Вариант исполнения			Габаритные ра	азмеры, мм		
"6"	LxBxH _{max}	-	5,6x3,0x3,0	5,6x4,5x4,0	7,1x5,0x3,0	8,5x7,1x4,5
	A±1	_	5,0	5,0	5,0	5,0
	LxBxH _{max}	2,0x1,25x1,0	3,2x1,6x1,6	3,2x2,5x1,8	4,5x3,2x1,8	5,7x5,0x2,2
"в"	Международный код	0805 (2012M)	1206 (3216M)	1210 (3225M)	1812 (4532M)	2220 (5750M)

Примечание: емкость конденсаторов варианта "б" начинается с 10 пФ.


Промежуточные значения номинальных емкостей соответствуют ряду E24 для группы МПО и ряду E6 для групп H30 и H90 по ГОСТ 28884-90

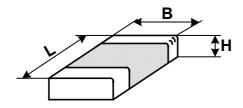
Характер зависимости емкости конденсаторов группы МПО от температуры


 ΔC_u — относительное изменение емкости

Характер зависимости емкости конденсаторов группы H30 от температуры

 ΔC_u — относительное изменение емкости

Характер зависимости емкости конденсаторов группы H30 от температуры


 ΔC_u — относительное изменение емкости

Технические условия: АЖЯР.673511.004 ТУ

Новая, наиболее широкая унифицированная серия керамических конденсаторов для поверхностного монтажа, включающая конденсаторы сверхбольшой емкости.

Предназначены для работы в цепях постоянного, переменного и пульсирующего токов и в импульсном режиме (для замены алюминиевых низковольтных низкоемкостных конденсаторов).

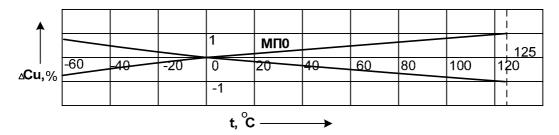
Конструкция:

Группа ТКЕ	МПО	H30	H90				
Номинальная емкость	0,47 пФ0,33 мкФ	1000 пФ4,7 мкФ	0,01 мкФ100 мкФ				
Номинальное напряжение, В	16; 50; 100; 250; 500	10; 25; 50; 100; 250; 500	10; 25; 50				
Допуск по емкости, %	±0,25; ±0,5 пФ для С _{ном} <10 пФ ±5; ±10; ±20 для С _{ном} ≥10пФ	±20; +50/-20	+80/-20				
Ряд емкостей	E24	E6	E6				
Тангенс угла потерь, $tg\delta$, не более	Для U_{Hom} =16 В: 0,0030 Для U_{Hom} >16 В: • не нормируется для $C_{\text{Hom}} \le 10$ пФ • 1,5(150/ C_{Hom} +7)·10 ⁻⁴ для 10 пФ< $C_{\text{Hom}} \le 50$ пФ • 0,0015 для $C_{\text{Hom}} > 50$ пФ	0,07 для U _{ном} =10 B 0,035 для U _{ном} >10 B	0,07 для U _{ном} =10 В 0,035 для U _{но м} >10 В				
Сопротивление изоляции, не менее, МОм (для $C_{\text{Hom}} \le 0,025 \text{ мкФ}$)	1000 для U _{ном} =16 В 10000 для U _{ном} >16 В	400 для U _{ном} =10 В 4000 для U _{ном} >10 В	400 для U _{ном} =10 В 4000 для U _{ном} >10 В				
Постоянная времени, не менее, МОм·мкФ (для С _{ном} >0,025 мкФ)	25 для U _{ном} =16 В 250 для U _{ном} >16 В	10 для U _{ном} =10 В 100 для U _{ном} >10 В	10 для U _{ном} =10 В 100 для U _{ном} >10 В				
Интервал рабочих температур, °C	-60 +125	-60 +85	-60 +85				
TKE, 10 ⁻⁶ /°C	0 ⁺¹²⁰ ₋₄₀ для С _{ном} ≤ 20 пФ 0±30 для С _{ном} >20 пФ	-	-				
Изменение емкости в интервале раб. темп., %	±1	±30	±90				
Климатическое исполнение*							
Наработка, час	25 000						
Срок сохраняемости, лет		25					

^{*}Конденсаторы применяют только в герметичных невскрываемых объемах или в объемах, в помещениях с искусственно регулируемыми климатическими условиями.

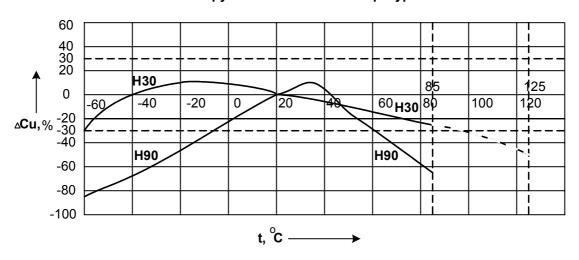
Обозначение при заказе: конденсатор К10-79-250 B-220 пФ±5% МПО АЖЯР.673511.004 ТУ

ГИРИКОНД ____

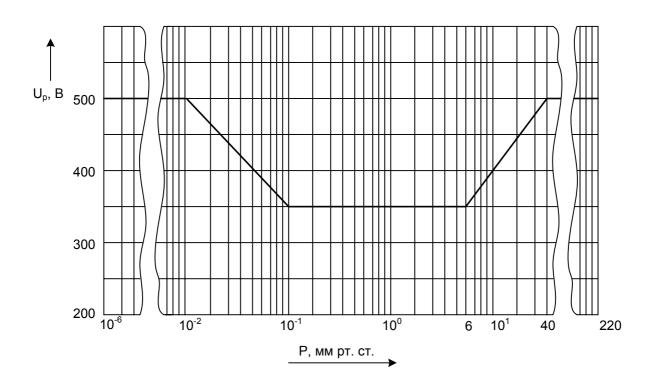

		Допускаемая		Dogwont M		<u> </u>
Номинальное напряжение, В	Номинальная емкость	реактивная мощность, ВАр	L	Размеры, м В	H _{max}	Macca,
	750; 820 пФ	·	1,6	0,8	0,7	0,03
	9102400 пФ	5	2,0	1,25	1,0	0,05
	27007500 пФ		3,2	1,6	1,6	0,15
	8200 пФ0,016 мкФ		3,2	2,5	,	0,2
16	0,0180,03 мкФ		4,5	3,2		0,3
	0,0330,082 мкФ	10	5,7	5		0,5
	0,091; 0,1 мкФ		8	6	1,75	0,8
	0,110,2 мкФ		10	8		1,5
	0,22; 0,33 мкФ		12	10		3,0
	390; 430 пФ	_	1,6	0,8	0,7	0,03
	4701000 пФ	5	2,0	1,25	1,0	0,05
50	11003600 пФ		3,2	1,6	1,6	0,15
	39007500 пФ		3,2	2,5	1,0	0,2
	8200 пФ0,015 мкФ	-	4,5	3,2	2,0	0,3
	0,0160,051 мкФ	10	5,7	5		0,5
	0,0560,082 мкФ		8	6		0,8
	0,0910,15 мкФ		10	8		1,5
	0,160,2 мкФ		12	10		3,0
	0,47240 пФ	40	1,6	0,8	0,7	0,03
-	270510 пФ	10	2,0	1,25	1,0	0,05
	5602200 пФ		3,2	1,6	1,6	0,15
	24003300 пФ		3,2	2,5		0,2
100	36009100 пФ		4,5	3,2	2,0	0,3
	0,010,027 мкФ	20	5,7	5		0,5
	0,03; 0,033 мкФ		8	6	_	0,8
	0,0360,062 мкФ	-	10	8	2,5	1,5
	0,0680,11 мкФ	-	12	10		3,0
	220820 пФ		3,2	1,6	1,6	0,15
	9101600 пФ	_	3,2	2,5		0,2
	18003600 пФ	-	4,5	3,2	2,0	0,3
250	39008200 пФ	20	5,7	5		0,5
200	9100 пФ0,012	-	8	6		0,8
	0,0130,022 мкФ	_	10	8	2,5	1,5
	0,0240,039 мкФ		12	10	1	3,0
	1,0200 пФ		3,2	1,6	1,6	0,15
	220330 пФ		3,2	2,5		0,13
500	360820 пФ		4,5	3,2	2,0	0,3
	22002400 пФ	20	5,7	5	2,5	0,5
	27003300 пФ		8	6	2,0	0,8
ŀ	36005100 пФ		10	8	3,0	1,5
	56009100 пФ	-	12	10	-	3,0

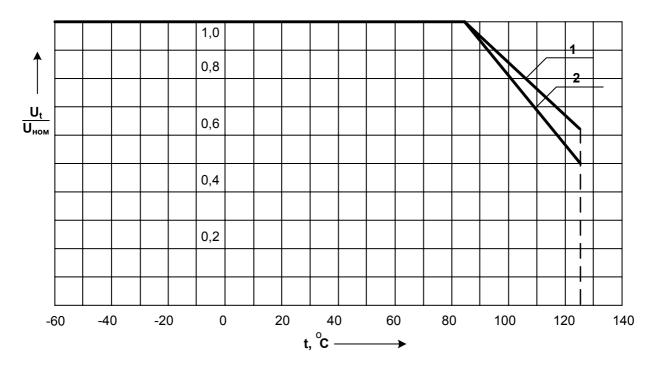
оминальное		Допускаемая				
напряжение, В		реактивная мощность, ВАр	L	В	H _{max}	Macca,
	6800 пФ; 0,01 мкФ		1,6	0,8	0,7	0,03
	0,0150,033 мкФ] [2,0	1,25	1,0	0,05
	0,0470,15 мкФ	0,2	3,2	1,6	1,6	0,15
	0,22 мкФ		3,2	2,5		0,2
10	0,330,68 мкФ		4,5	3,2		0,3
	1; 1,5 мкФ		5,7	5	1,75	0,5
	2,2 мкФ	0,5	8	6	1,75	0,8
	3,3 мкФ	0,5	10	8		1,5
	4,7 мкФ		12	10		3,0
	3300; 4700 пФ		1,6	0,8	0,7	0,03
	6800 пФ0,022 мкФ		2,0	1,25	1,0	0,05
	0,0330,1 мкФ	0,3	3,2	1,6	1,6	0,15
	0,15 мкФ	- · · · · · · · · · · · · · · · · · · ·	3,2	2,5		0,2
25	0,22; 0,33 мкФ		4,5	3,2		0,3
	0,47; 0,68 мкФ		5,7	5	2.0	0,5
	1 мкФ	0,5	8	6	2,0	0,8
	1,5 мкФ] 0,5	10	8		1,5
	2,2; 3,3 мкФ] [12 10		3,0	
50	10002200 пФ		1,6	0,8	1.0	0,03
	3300 пФ0,015 мкФ		2,0	1,25	1,0	0,05
	0,0220,047 мкФ	0,3	3,2	1,6	1,6	0,15
	0,068; 0,1 мкФ] [3,2	2,5	2.0	0,2
	0,15; 0,22 мкФ		4,5	3,2	2,0	0,3
	0,33; 0,47 мкФ	0,5	5,7	5		0,5
	0,68 мкФ] [8	6	2.5	0,8
	1 мкФ	1,0	10	8	2,5	1,5
	1,5; 2,2 мкФ] 1,0	12	10		3,0
	0,01 мкФ	0.3	3,2	1,6	1,6	0,15
	0,022; 0,033 мкФ	0,3	3,2	2,5	2.0	0,2
	0,047; 0,068 мкФ	0.5	4,5	3,2	2,0	0,3
100	0,1; 0,15 мкФ	0,5	5,7	5		0,5
	0,22 мкФ	1,0	8	6	1 25	0,8
	0,33 мкФ	4.5	10	8	2,5	1,5
	0,47 мкФ	1,5	12	10		3,0
	22006800 пФ	0.2	3,2	1,6	1,6	0,15
	0,01; 0,015 мкФ	0,3	3,2	2,5	2.0	0,2
	0,022; 0,033 мкФ	0.5	4,5	3,2	2,0	0,3
250	0,047; 0,068 мкФ	0,5	5,7	5		0,5
	0,1 мкФ	1,0	8	6	2.5	0,8
	0,15; 0,22 мкФ	1,5	10	8	2,5	1,5
	0,33 мкФ	2,0	12	10		3,0
	1000; 1500 пФ		3,2	1,6	1,6	0,15
	2200; 3300 пФ	0,3	3,2	2,5		0,2
ļ	4700; 6800 пФ	0.5	4,5	3,2	2,0	0,3
500	0,010,022 мкФ	0,5	5,7	5	2,5	0,5
ļ	0,033 мкФ	1,0	8	6		0,8
ļ	0,047 мкФ	1,5	10	8	3,0	1,5
ľ	0,068 мкФ	2,0	12	10	1	3,0

Номинальное		Н90 Допускаемая		Размеры, м	IM	
напряжение, В	Номинальная емкость	реактивная мощность, ВАр	L	В	H _{max}	Масса, г
	0,1 мкФ		1,6	0,8	0,7	0,03
	0,15; 0,22 мкФ		2,0	1,25	1,0	0,05
	0,330,68 мкФ	0,2	3,2	1,6	1,6	0,15
	1,0; 1,5 мкФ		3,2	2,5		0,2
	2,2; 3,3 мкФ		4,5	3,2		0,3
10	4,7; 6,8 мкФ		5,7	5	4 75	0,5
	10 мкФ		8	6	1,75	0,8
	15; 22 мкФ	0.5	10	8		1,5
	33 мкФ	0,5	12	10	_	3,0
	47; 68 мкФ		12	10	4,0	4,0
	100 мкФ		12	10	5,0	5,0
	0,0330,068 мкФ	0,3	1,6	0,8	0,7	0,03
	0,1 мкФ		2,0	1,25	1,0	0,05
	0,150,0,47 мкФ		3,2	1,6	1,6	0,15
	0,68 мкФ		3,2	2,5		0,2
25	1,02,2 мкФ		4,5	3,2		0,3
	3,3 мкФ		5,7	5	2,0	0,5
	4,7; 6,8 мкФ	0.5	8	6	2,0	0,8
	10 мкФ	0,5	10	8		1,5
	15 мкФ	1	12	10		3,0
	0,010,022 мкФ		1,6	0,8	0,7	0,03
	0,033; 0,047 мкФ		2,0	1,25	1,0	0,05
	0,0680,15 мкФ	0,3	3,2	1,6	1,6	0,15
	0,22; 0,33 мкФ]	3,2	2,5	2.0	0,2
50	0,47; 0,68 мкФ		4,5	3,2	2,0	0,3
	1,02,2 мкФ		5,7	5		0,5
	3,3 мкФ	0,5	8	6	2.5	0,8
	4,7 мкФ		10	8	2,5	1,5
	6,8 мкФ]	12	10		3,0


Конденсаторы К10-79 по техническим параметрам находятся на уровне лучших мировых образцов и предназначены для замены изделий электронной техники иностранного производства (функциональный аналог серий CD, CM ф. «AVX» и GRM 39/40/42, GRM200 ф. «Murata»).

Характер зависимости емкости конденсаторов группы МП0 от температуры




 ΔC_{u} – относительное изменение емкости

Характер зависимости емкости конденсаторов групп H30 и H90 от температуры

 ΔC_{u} – относительное изменение емкости

- 1-Для конденсаторов на $U_{\text{ном}}$ = 16 B 2-Для конденсаторов на $U_{\text{ном}}$ = 50, 100, 250 500 B

Технические условия: АЖЯР.673511.005 ТУ

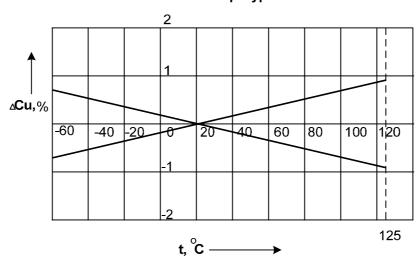
Предназначены для работы в цепях постоянного, переменного и пульсирующего токов на частотах: K10-80-1 –до 1250 МГц; K10-80-2 – до 150 МГц.

Конструкция: К10-80-1 – безвыводные; К10-80-2 – с ленточными выводами

Группа ТКЕ	МПО
Номинальная емкость, пФ: К10-80-1 К10-80-2	0,47 1000 2200 5100
Номинальное напряжение, В: К10-80-1 К10-80-2	100; 250; 500 630
Допуск по емкости	±0,25 пФ; ±0,5 пФ для С _{ном} <10 пФ ±5%; ±10%; ±20% для С _{ном} ≥10 пФ
Ряд емкостей	Е12 для С _{ном} <10 пФ; Е24 для С _{ном} ≥10 пФ
Тангенс угла потерь, $tg\delta$, не более	- для С _{ном} ≤10 пФ: не нормируется - для 10 пФ<С _{ном} ≤ 50 пФ: 1,5(150/С _{ном} +7)·10 ⁻⁴ - для С _{ном} > 50 пФ: 0,0015
Сопротивление изоляции, не менее, МОм	10 000
Интервал температур при эксплуатации, °С	-60 +12 5
ТКЕ в интервале температур +20°С +85°С, 10 ⁻⁶ /°С	0 ⁺¹²⁰ ₋₄₀ для С _{ном} ≤ 20 пФ 0±30 для С _{ном} > 20 пФ
Изменение емкости в интервале температур при эксплуатации, %	±1
Климатическое исполнение*	-
Наработка, ч	25 000
Интенсивность отказов, не более, 1/ч	5·10 ⁻⁶
Гамма-процентный срок сохраняемости при γ=99,5%, не менее, лет	25

^{*}Конденсаторы применяют только в герметичных невскрываемых объемах или в объемах, в помещениях с искусственно регулируемыми климатическими условиями.

Обозначение при заказе: конденсатор К10-80-1 – 100 В – 0,47 п Φ ±0,25 п Φ АЖЯР.673511.005 ТУ

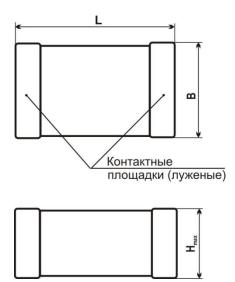

ГИРИКОНД _

Вариант	Номинов Номинов но							
	Номинальная емкость,	Номинальное напряжение,	L		В			Масса, г, не более
	пФ	В	Номин.	Пред. откл.	Номин.	Пред. откл.	H _{max}	1.0 007100
	0,47180	100	2,0	+0,40 -0,25	1,5	±0,4	1,5	0,05
K10-80-1	1,0 100	500	2,5	+0,6	3,2	+0,5 -0,3	2,6	0,3
	110 240	250	2,3	-0,3				
	270 1000	100	3,2	+0,50 -0,25	2,5	±0,4		
K10-80-2	2200 5100	630	13,5		11,3		5,0	6,0

Промежуточные значения номинальных емкостей соответствуют ряду Е12 для конденсаторов с Сном<10 пФ и Е24 для конденсаторов с С≥10 пФ по ГОСТ 28884-90.

Конденсаторы К10-80 по техническим параметрам находятся на уровне лучших мировых образцов и предназначены для замены изделий электронной техники иностранного производства (аналог серий АТС, США).

Характер зависимости емкости конденсаторов от температуры

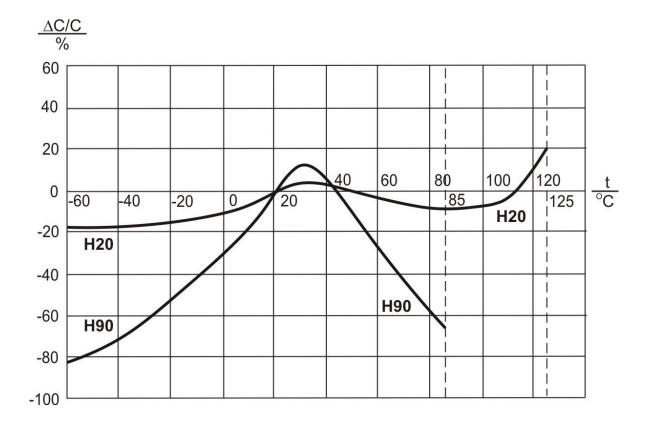


 ΔC_u – относительное изменение емкости

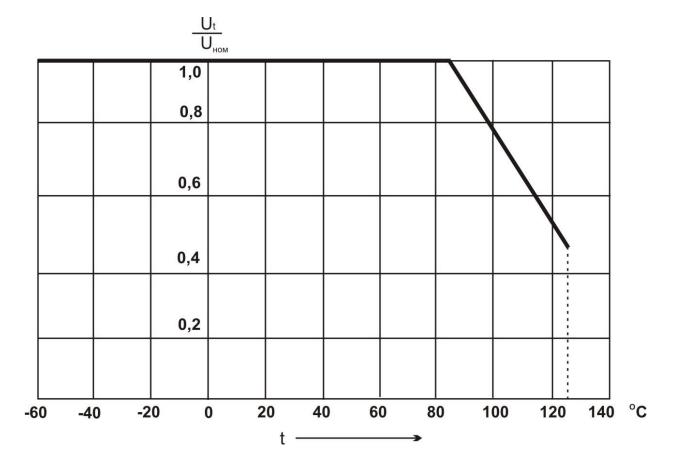
Технические условия: АЖЯР.673511.007 ТУ.

Предназначены для работы в цепях постоянного, переменного и пульсирующего токов и в импульсном режиме в аппаратуре самого различного назначения, в т.ч. в источниках вторичного электропитания.

Конструкция: безвыводные, незащищенные

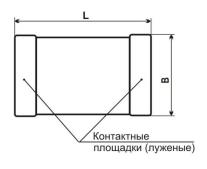

Группа ТСЕ	H20	H90		
Номинальная емкость, мкФ	0,01010	1,0 22		
Номинальное напряжение, В	50; 100; 250; 500; 630	50		
Допускаемые отклонения емкости,%	±20; +50/-20	+80/-20		
Ряд емкостей	E6			
Тангенс угла потерь, $tg\delta$, не более	0,035			
Сопротивление изоляции, не менее, МОм (для $C_{\text{ном}} \le 0,025 \text{ мк} \Phi$)	4000			
Постоянная времени, не менее, МОм⋅мкФ (для С _{ном} >0,025 мкФ)	100			
Интервал температур при эксплуатации, °С	-60 +125	-60 +85		
Изменение емкости в интервале рабочих температур , %	±20	±90		
Климатическое исполнение*	-			
Наработка, ч	150 0	00		
Интенсивность отказов, не более, 1/ч	1.10 -6			
Срок сохраняемости, не менее, лет	25			
Масса, г, не более	5,0			

^{*} Конденсаторы применяют только в герметичных невскрываемых объемах или в объемах, вскрываемых в помещениях с искусственно регулируемыми климатическими условиями.


Обозначение при заказе: Конденсатор К10-82-50 B-0,68 мкФ±20%-H20 АЖЯР.673511.007 ТУ

Группа ТСЕ	U _{ном} , В		Номинальная емкость С _{ном} , мкФ								
	50	0,330,68	1,0; 1,5	2,2	3,3	4,7	6,8; 10	-			
	100	0,15; 0,22	0,33; 0,47	0,68	1,0	1,5; 2,2	3,3	-			
H20	250	0,022 0,068	0,10; 0,15	0,22	0,33; 0,47	0,68	1,0	-			
	500	0,001 0,015	0,022; 0,033	0,047	0,068	0,10; 0,15	0,22	-			
	630	0,01	0,015; 0,022	0,033	0,047	0,068	0,10	_			
H90	50	1,0	1,5 3,3	4,7	6,8	10,0	_	15; 22			
LxBxH,	_{nax} , MM	4,5x3,2x3,5	5,7x5,0x4,0	5,7x6,3x4,0	8,0x6,0x4,0	10x8,0x4,0	12x10x4,0	12x10x3,5			

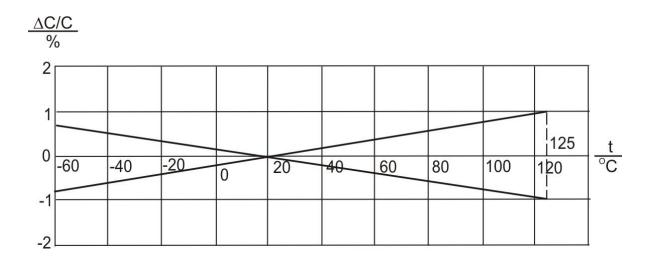
Зависимость изменения емкости конденсаторов от температуры


Зависимость напряжения конденсаторов группы Н20 от температуры

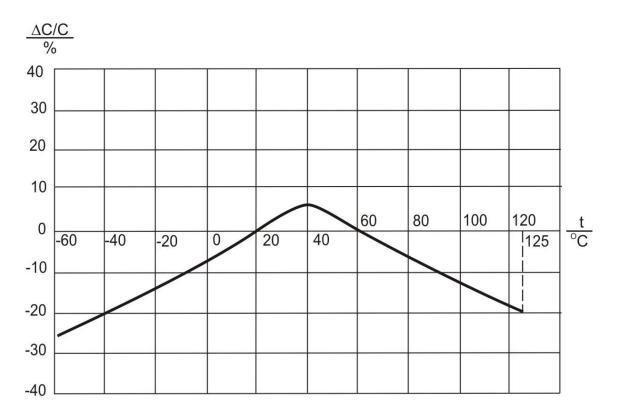
Технические условия: АЖЯР.673511.008 ТУ.

Предназначены для работы в источниках вторичного электропитания.

Конструкция: безвыводные, незащищенные

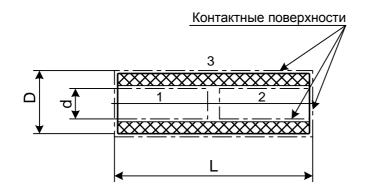


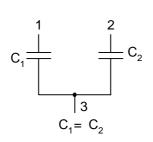
Группа ТСЕ	МПО	H30		
Номинальная емкость	1,0 пФ0,024 мкФ	5600 пФ 4,7 мкФ		
Номинальное напряжение, В	16; 25; 50;	16; 25; 50;100; 250; 500		
Допускаемые отклонения емкости	±0,5 пФ для С _{ном} <10 пФ ±5%; ±10%; ±20% для С _{ном} ≥10 пФ	±10%; ±20%; +50/-20%		
Ряд емкостей	E24	E12		
Тангенс угла потерь, $tg\delta$, не более	-не нормируется для С _{ном} ≤ 10 пФ -3,0(150/С _{ном} +7)·10 ⁻⁴ для 10 пФ<С _{ном} ≤50 пФ -0,003 для С _{ном} >50 пФ	0,070 на U _{ном} ≤ 50 В 0,035 на U _{ном} > 50 В		
Сопротивление изоляции, не менее, МОм (для $C_{\text{ном}} \le 0,025$ мкФ)	1000	400 на U _{ном} ≤ 50 В 4000 на U _{ном} > 50 В		
Постоянная времени, не менее, МОм·мкФ (для С _{ном} >0,025 мкФ)	-	10 на U _{ном} ≤ 50 В 100 на U _{ном} > 50 В		
Интервал температур при эксплуатации, °С	-60	. +125		
ТКЕ в интервале температур +20°С +85°С, 10 ⁻⁶ /°С	0±30	-		
Изменение емкости в интервале рабочих температур, %	±1	±30		
Климатическое исполнение*	-	_		
Наработка, ч	25	000		
Интенсивность отказов, не более, 1/ч	1·10 ⁻⁶			
Срок сохраняемости, не менее, лет	25			
Масса, г, не более	2,0			


^{*} Конденсаторы применяют только в герметичных невскрываемых объемах или в объемах, вскрываемых в помещениях с искусственно регулируемыми климатическими условиями. **Обозначение при заказе:** Конденсатор К10-83-50 В-100 пФ±20%-МП0 АЖЯР.673511.008 ТУ

Группа ТСЕ	U _{ном} , В		Номинальная емкость С _{ном}									
	16	620 - 1100 пФ	1200 – 3300 пФ	3600 пФ - 0,012 мкФ	0,013 - 0,024 мкФ	-	_	_				
МПО	25	220 - 560 пФ	620 - 2000 пФ	2200 - 7500 пФ	8200 пФ - 0,018 мкФ	-	_	-				
	50	1,0 - 200 пФ	220 - 820 пФ	910 - 3000 пФ	3300 - 7500 пФ	-	_	-				
	16	0,012 - 0,018 мкФ	0,022 - 0,12 мкФ	0,15 - 0,39 мкФ	0,47 - 1,2 мкФ	1,5; 1,8 мкФ	2,2 - 3,9 мкФ	_				
	25	0,01 мкФ	0,012 - 0,10 мкФ	0,12 - 0,33 мкФ	0,39 — 1,00 мкФ	1,2; 1,5 мкФ	1,8 - 4,7 мкФ	-				
H30	50	5600; 6800 пФ	8200 пФ - 0,039 мкФ	0,047 - 0,22 мкФ	0,27 - 0,56 мкФ	0,68 - 1,0 мкФ	1,2; 1,5 мкФ	-				
ПЗО	100	_	-	_	0,047 - 0,15 мкФ	0,18 - 0,39 мкФ	0,47 - 1,0 мкФ	1,2 - 2,2 мкФ				
	250	-	ı	-	0,01 - 0,039 мкФ	0,047 - 0,15 мкФ	0,18 - 0,47 мкФ	0,56 - 1,0 мкФ				
	500	_	ı	_	4700 - 8200 пФ	0,01 - 0,027 мкФ	0,033 - 0,10 мкФ	0,12 - 0,22 мкФ				
Габарі L×B×H _{ma}		1,6x0,8x1,1	2,0x1,25x1,55	3,2x1,6x1,9	3,2x2,5x2,8	4,5x3,2x3,5	5,7x5,0x5,3	8,0x6,0x6,3				
Код Е	IA	0603	0805	1206	1210	1812	2220	3224				

Характер зависимости емкости конденсаторов группы МП0 от температуры


Характер зависимости емкости конденсаторов группы Н30 от температуры


Технические условия: АДПК.673511.007 ТУ

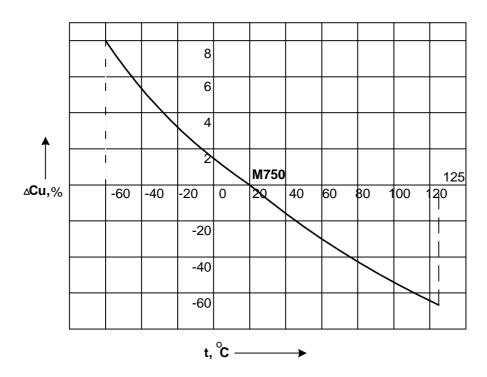
Предназначены для работы в качестве встроенных элементов внутри комплектных изделий в цепях постоянного и переменного токов, и в импульсных режимах в качестве емкостных элементов фильтр-контактов соединителей.

Конструкция:

Электрическая схема

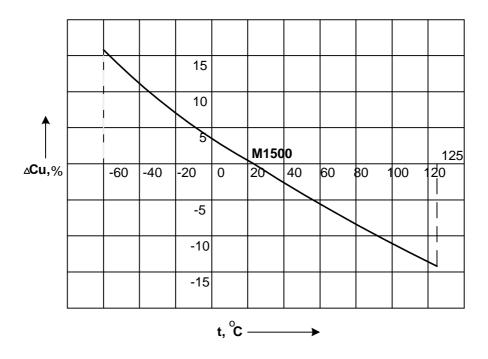
Основные характеристики

Параметры	Тип 1 Тип2							
Группа ТКЕ	M750	M1500	M2200	M3300	H30 H50 H70		H70	H90
Допустимое отклонение суммарной емкости, %		±5*; ±10; ±20				±20 +50/-20	+80/-20	+80/-20 +100/-10
Ряд емкостей					E24			
Тангенс угла потерь, макс	0,002	0,002	0,0025	0,005		0,0)35	
Сопротивление изоляции мин, МОм	1000 400							
Интервал рабочих температур, °C			-60 +	125			-60 +85	;
TKE, 10 ⁻⁶ /°C		-	-2200±500	-3300±500			-	
Изменение емкости в интервале рабочих теператур, %	±12	±15	±30	±50	±30	±50	±70	±90
Наработка, час	15000							
Срок сохраняемости, лет	15							
Климатическое исполнение				,	УХЛ			

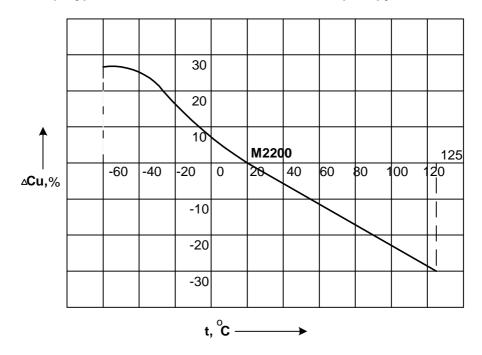

^{*} по соглашению для групп М750 и М1500

Обозначение при заказе: конденсатор К10-72-2 x 0,39 пФ±10% - 12 – М750 АДПК.673511.007 ТУ

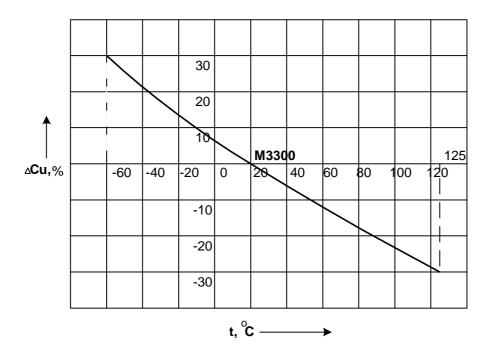
Группа ТКЕ	Номинальное напряжение, В	Номинальная емкость каждой секции, пФ		Реактивная мощность, ВАр	Габаритные размеры, мм, макс	Масса, г, макс	
M750		22	33		10,1 x 2,5		
		22	47		12,1 x 2,5		
M1500		47	91		10,1 x 2,5		
WITSOU	250	47	120	4,0	12,1 x 2,5		
Maago		12	220	4,0	10,1 x 2,5		
M2200		12	270	12,1 x 2,5			
Maann	1	270	290		10,1 x 2,5		
M3300		270	470			12,1 x 2,5	0,25
H30		470	620		10,1 x 2,5	0,25	
ПЗО		470	820		12,1 x 2,5		
H50		820	1200		10,1 x 2,5		
ПЭО	100	820	1500	0,4	12,1 x 2,5		
U70	100	1500	2200	0,4	10,1 x 2,5		
H70		1500	2400		12,1 x 2,5		
ЦОО]	2400	3000		10,1 x 2,5		
H90		2400	5100		12,1 x 2,5		


По дополнительному соглашению конденсаторы групп M750 и M1500 поставляются с допускаемым отклонением емкости $\pm 5\%$.

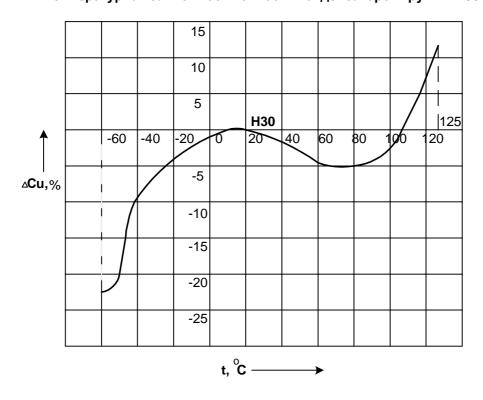
Температурная зависимость емкости конденсаторов группы М750


 ΔC_u – относительное изменение емкости

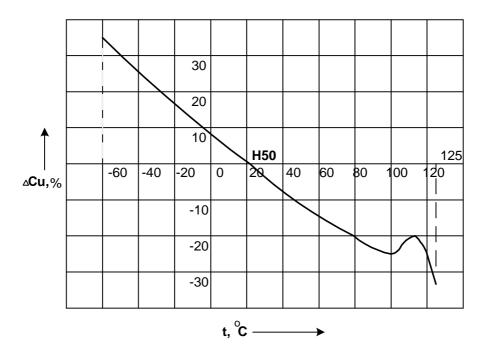
Температурная зависимость емкости конденсаторов группы М1500


 ΔC_u – относительное изменение емкости

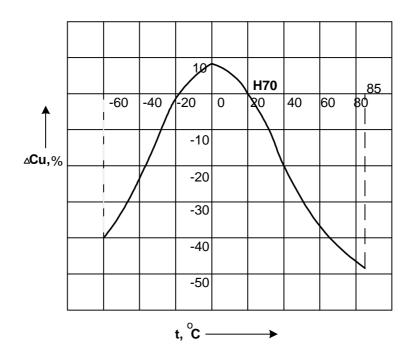
Температурная зависимость емкости конденсаторов группы М2200


 ΔC_u – относительное изменение емкости

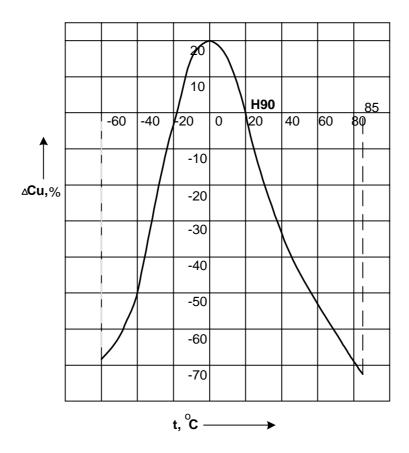
Температурная зависимость емкости конденсаторов группы М3300


 ΔC_u – относительное изменение емкости

Температурная зависимость емкости конденсаторов группы Н30


 ΔC_u – относительное изменение емкости

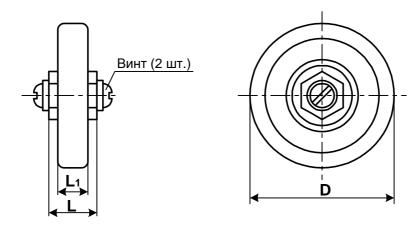
Температурная зависимость емкости конденсаторов группы Н50


 ΔC_u – относительное изменение емкости

Температурная зависимость емкости конденсаторов группы Н70

 ΔC_u – относительное изменение емкости

Температурная зависимость емкости конденсаторов группы Н90



 ΔC_u – относительное изменение емкости

Технические условия: ОЖ0.460.096 ТУ

Предназначены для работы в качестве встроенных элементов внутреннего монтажа аппаратуры.

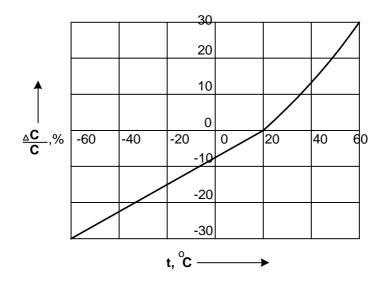
Конструкция:

 Номинальное напряжение
 31,5; 40; 50; 63 кВ

 Номинальная емкость
 2200 пФ ... 0,015 мкФ

 Допускаемое отклонение емкости
 ±30%

 Тангенс угла потерь
 0,035

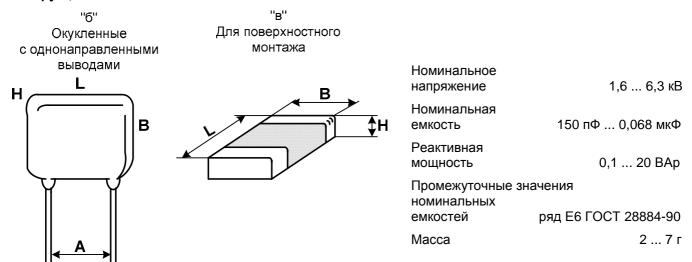

 Интервал рабочих температур
 -60 ... +55 °C

 Сопротивление изоляции, не менее
 4000 МОм

U _{ном} ,	С _{ном}	Pa	змеры, мм, і	ном	Масса, г
кВ	Оном	D	L	L1	iviacca, i
31,5	2200 пФ	50	15	14	90
31,5	3300 пФ	50	15	14	90
40	0,01 мкФ	103	22,2	16	450
40	0,015 мкФ	103	22,2	16	450
50	4700 пФ	132	37	26	900
50	6800 пФ	132	37	26	900
63	3300 пФ	132	42	42	1250

Обозначение при заказе: конденсатор К15-10 - 50 кВ - 4700 пФ ОЖ0.460.096 ТУ

Зависимость изменения емкости конденсаторов от температуры



Наработка10000 чСрок сохраняемости10 летКлиматическое исполнениеУХЛ по ГОСТ 15150-69

Технические условия: ОЖ0.460.204 ТУ

Предназначены для работы в цепях постоянного, переменного и пульсирующего токов.

Конструкция:

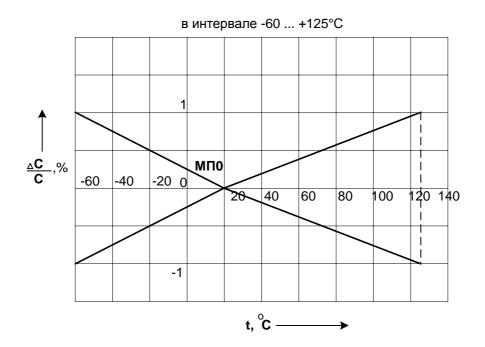
Для варианта "в" требуется защита межэлектродного промежутка от поверхностного разряда.

Группа ТКЕ	U _{ном} , кВ	С _{ном}					
	1,6	150 680 pF	1000 2200 pF	3300 pF 0,01 μF	-		
	2	150 330 pF	470 1500 pF	2200 6800 pF	-		
МПО	3	150 220 pF	330 680 pF	1000 3300 pF	-		
IVII IO	4	-	150 330 pF	470 2200 pF	-		
	5	-	-	150 1000 pF	-		
	6,3	-	-	150 470 pF	-		
	1,6	470 3300 pF	4700 pF 0,01 μ F	0,015 0,068 μF	-		
	2	330 2200 pF	3300 6800 pF	0,01 0,047 μF	-		
H30	3	220 1500 pF	2200 4700 pF	6800 pF 0,015 μF	-		
1130	4	150 680 pF	1000 2200 pF	3300 6800 pF	-		
	5	-	-	1500; 2200 pF	3300 6800 pF		
	6,3	-	-	1500; 2200 pF	3300; 4700 pF		

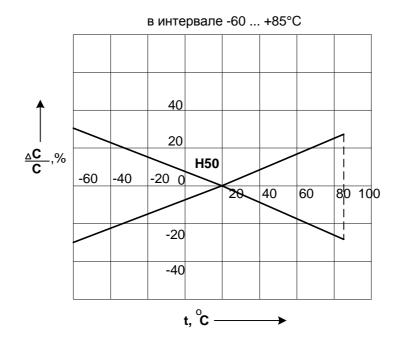
Вариант исполнения	Габаритные размеры, мм					
"B"	LxBxH	5,5x4,0x3,8	8,0x6,0x4,0	12,0x10,0x4,5	16,0x14,0x6,0	
"ნ"	LxBxH	9,5x7,5x7,0	12,5x9,8x7,5	16,5x14,0x8,0	-	
	A±1	5,0	7,5	12,5	-	

Обозначение при заказе: конденсатор К15-20в - 2 кВ - 0,033 мкФ - Н50 ОЖ0.460.204 ТУ

ГИРИКОНД ___


Основные характеристики

Параметры	Тип 1	Тип 2
Тараметры	МПО	H30
Допустимое отклонение емкости, %	±20	+50/-20
Тангенс угла потерь, макс	0,0015	0,035
Сопротивление изоляции (С≤0,025 мкФ), мин, МОм	10000	3000
Постоянная времени (С>0,025 мкФ), мин, МОм⋅мкФ	250	100
Интервал рабочих температур, °C	-60 +125	-60 +85

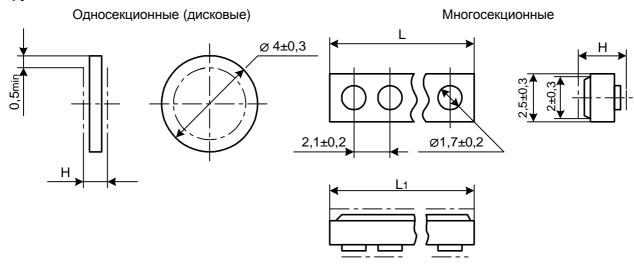

Температурный коэффициент емкости

Группа ТКЕ	TKE, 10 ⁻⁶ /°C	Изменение емкости в интервале рабочих температур, %
МПО	0 ± 30	± 1
H30	-	± 30

Температурная зависимость емкости конденсаторов группы МП0

Температурная зависимость емкости конденсаторов группы Н50

Наработка, мин 2000 ч (5000 ч облегченный режим)

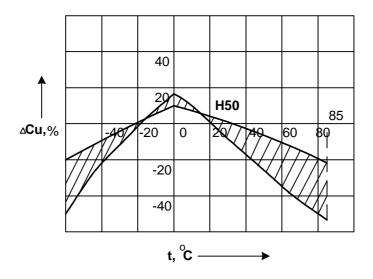

Срок сохраняемости 20 лет

Климатическое исполнение В по ГОСТ В20.39.404-81

Технические условия: ОЖ0.460.210 ТУ

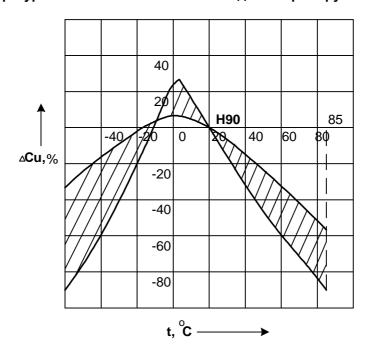
Предназначены для работы в цепях постоянного тока.

Конструкция:


Требуется защита межэлектродного промежутка конденсаторов от поверхностного разряда.

Номинальное напряжение 2; 6,3 кВ Номинальная емкость 680 пФ; 2х39; 3х39; 2х56; 3х56 пФ Сопротивление изоляции, мин 100000 МОм Рабочая температура -60 ... +70 °C Изменение емкости в интервале температур $\pm 20\%$ Тангенс угла потерь, макс 0,045

				Допуск по	Размеры, мм			
Тип	Группа ТКЕ	U _{ном} , кВ	J _{ном} , С _{ном} , кВ пФ	емкости.	D	L	ŀ	1
		KD		%		_	Луженые	Серебреные
Односекционные	H90	2	680	+80/-20	4,0	-	0,8	1,3
	LIFO	6,3	3x39			6,7	1.4	1.0
Многосекционные		0,3	2x39	+50/-20	_	4,8	1,4	1,9
	H50	2	3x56	+50/-20	-	6,7	1,2	1.7
		2 2x56	2x56			4,8		1,7


Обозначение при заказе: конденсатор К15-21 - 2 кВ – 3х56 пФ ОЖ0.460.210 ТУ

Температурная зависимость емкости конденсаторов группы Н50

 ΔC_{u} – относительное изменение емкости

Температурная зависимость емкости конденсаторов группы Н90

 ΔC_u – относительное изменение емкости

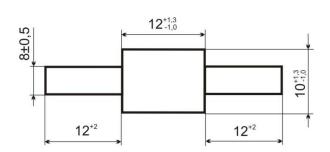
2000 ч (6,3 кВ) ; 5000 ч (2 кВ) Наработка, мин

Срок сохраняемости 15 лет УХЛ

Климатическое исполнение

Технические условия: АДПК.673516.007 ТУ

Предназначены для работы в цепях постоянного, переменного и пульсирующего токов на частотах ВЧ, ОВЧ, и УВЧ (в зависимости от номинальной емкости) при условии защиты межэлектродного промежутка конденсаторов К15-33в от поверхностного разряда.


Конструкция:

К15-33, К15-33а – защищенные (неизолированные) с ленточными выводами.

К15-33в – незащищенные с лужеными контактными поверхностями.

Группа исполнения:

«Р» – для конденсаторов, используемых в интервале рабочих температур от минус 60 °C до плюс 125 °C. «Т» – для конденсаторов, используемых в интервале рабочих температур от минус 60 °C до плюс 155 °C.

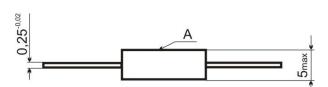
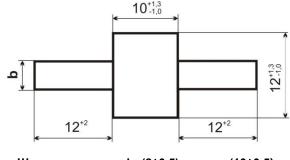



Рис. 1 К15-33

Ширина выводов b: (8±0,5) мм или (10±0,5) мм

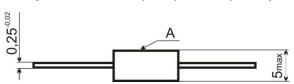


Рис. 1а К15-33а

Рис. 2 К15-33в

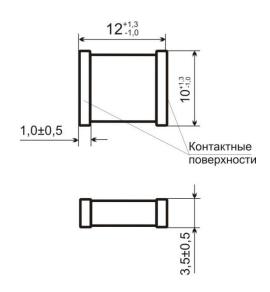


Рис. 3 К15-33в

Группа ТКЕ	МП0
Номинальная емкость, пФ:	1,0 5100
Номинальное напряжение, кВ:	6,3; 4,0; 3,0; 2,5; 2,0; 1,6; 1,0
Допускаемые отклонения емкости	±0,25 пФ; ±0,5 пФ для С _{ном} <10 пФ ±5%; ±10% для С _{ном} ≥10 пФ
Ряд емкостей	E12 для С _{ном} <10 пФ; E24 для С _{ном} ≥10 пФ
Тангенс угла потерь, tgδ, не более	- для $C_{\text{ном}} \le 10$ пФ: не нормируется - для 10 пФ< $C_{\text{ном}} \le 50$ пФ: $1,2(150/C_{\text{ном}} + 7) \cdot 10^{-4}$ (К15-33, К15-33а) $1,5(150/C_{\text{ном}} + 7) \cdot 10^{-4}$ (К15-33в) - для $C_{\text{ном}} > 50$ пФ: $0,0012$ (К15-33, К15-33а); $0,0015$ (К15-33в)
Сопротивление изоляции, не менее, Ом	1·10 ¹⁰
Интервал температур при эксплуатации, °C	-60 +125 (P); -60 +155 (T)
ТКЕ в интервале температур +20°C +85°C, 10 ⁻⁶ /°C	0±30
Изменение емкости в интервале рабочих температур , %	±1
Климатическое исполнение: К15-33, К15-33а К15-33в*	В 3.1 по ГОСТ 15150
Наработка, ч	10 000
Интенсивность отказов, не более, 1/ч	1·10 ⁻⁷
95-процентный срок сохраняемости, не менее, лет	15
Масса, г, не более К15-33, К15-33а К15-33в	5 3

^{*} Конденсаторы применяют только в герметичных невскрываемых объемах или в объемах, вскрываемых в помещениях с искусственно регулируемыми климатическими условиями.

Вариант конструкции	U _{ном} , кВ	С _{ном} , пФ	Группа исполнения
	6.2	1100	Р
K15-33,	6,3	1,52,2; 3,9100	T
K15-33a	4.0	110390	Р
	4,0	110330	Т
К15-33в	4.0	1390	Р
К10-33В	4,0	1,52,2; 3,9330	Т
	3,0	360470	Т
	2,5	430750	Р
1545.00		510820	Т
K15-33	2,0	9101200	Т
К15-33а К15-33в	1.6	8201800	Р
IV 10-99R	1,6	13001800	Т
	1.0	20003600	Р
	1,0	20005100	Т

Промежуточные значения номинальных емкостей соответствуют ряду Е12 для конденсаторов с С_{ном}<10 пФ и Е24 для конденсаторов с С≥10 пФ по ГОСТ 28884-90.

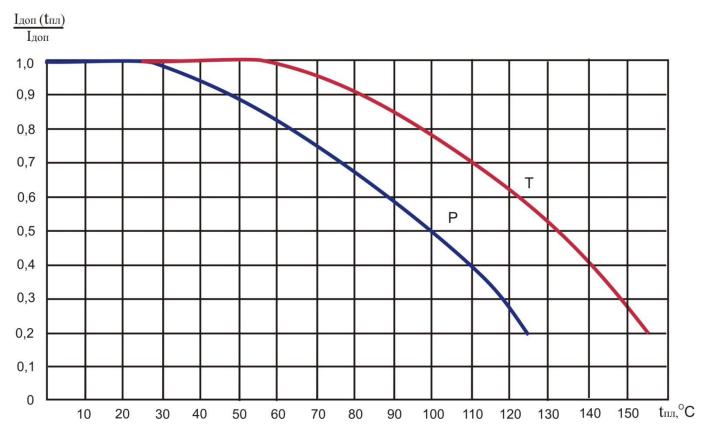
ёОбозначение при заказе

В обозначении при заказе указываются:

- вариант конструкции: а, в2 (рис. 2) или в3 (рис. 3);
- номинальное напряжение;
- номинальная ёмкость и допускаемое отклонение;
- цифра «8» или «10» для конденсаторов К15-33а, соответствующая ширине выводов (мм);
- группа исполнения «Р» или «Т»;
- обозначение ТУ.

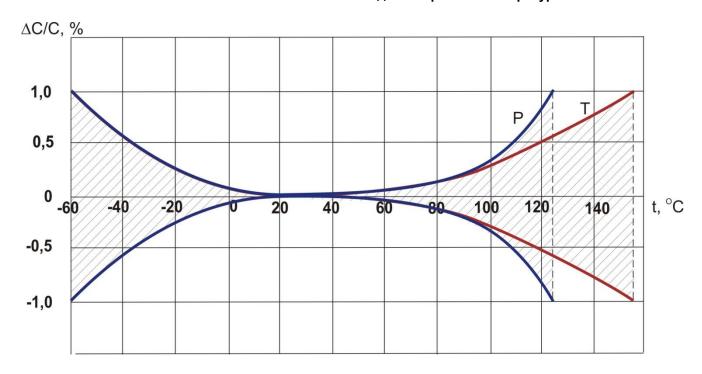
Примеры обозначения:

Конденсатор К15-33—4 кВ—330 пФ ± 5 %—Т АДПК.673516.007 ТУ Конденсатор К15-33а—4 кВ—330 пФ ± 5 %—Т—8 АДПК.673516.007 ТУ Конденсатор К15-33а—3 кВ—330 пФ ± 5 %—Р—10 АДПК.673516.007 ТУ Конденсатор К15-33в2—3 кВ—330 пФ ± 5 %—Р АДПК.673516.007 ТУ


Допускаемый реактивный ток I_{доп} (эффективное значение на частоте 30 МГц) при отводе тепла от конденсатора с помощью теплоотводящей платы (шины) для интервала температур поверхности теплоотводящей платы (шины) в месте крепления вывода конденсатора $t_{\rm nn}$ – от минус 60 °C до плюс 25 °C для конденсаторов группы исполнения «Р»

U _{ном} , кВ	С _{ном} , пФ	K15-33	K15-33a	К15-33в (рис. 2)	К15-33в (рис. 3)
	1,02,7	2	2,5	_	_
	3,313	4	5	_	_
6,3	1536	6	7	_	-
	3947	8	10	_	ı
	51100	10	11	_	_
	1,02,7	_	_	2	1,5
	3,313	_	_	3	2,5
4,0	1536	_	_	4	4
4,0	3947	_	_	6	5
	51100	_	_	7	6
	110300	8	10	7	5
3,0	330390	8	10	7	5
2,5	430750	8	10	7	5
	8201000	10	11	7,5	5,5
1,6	11001300	11	12	8	6
	15001800	12	14	9	7
	2000;2200	13	15	10	8
4.0	2400;2700	14	16	11	9
1,0	3000;3300	15	17	12	10
	3600	16	18	12,5	11

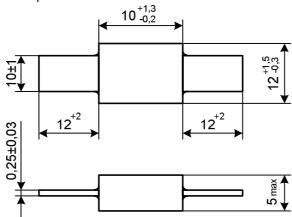
Допускаемый реактивный ток $I_{\text{доп}}$ (эффективное значение на частоте 30 МГц) при отводе тепла от конденсатора с помощью теплоотводящей платы (шины) для интервала температур поверхности теплоотводящей платы (шины) в месте крепления вывода конденсатора $t_{\text{пл}}$ – от минус 60 °C до плюс 55 °C для конденсаторов группы исполнения «Т»


U _{ном} , кВ	С _{ном} , пФ	K15-33	K15-33a	К15-33в (рис. 2)	К15-33в (рис. 3)
	1,52,2; 3,98,2	2	2,5	-	-
	1016	4	5	_	_
6,3	1830	6	7	_	_
	3347	8	10	_	_
	51100	10	12	_	_
	1,52,2; 3,98,2	-	-	2	1,5
	1016	-	-	3,5	3
	1830	-	-	5	4
4,0	3347	ı	ı	7	5,5
	51100	ı	ı	8	7
	110130	6	7	5	4
	150200	8	10	7	5,5
	220330	10	12	8	7
3,0	360470	12	14	10	8
2,5	510820	12	14	10	8
2,0	9101200	12	14	10	8
1,6	13001800	14	16	11	10
	20002400	15	18	12	11
1,0	27003300	16	19	14	12
	36005100	18	20	15	14

Зависимость допускаемого реактивного тока (эффективное значение) от температуры теплоотводящей платы (шины)

 $I_{\text{Доп}}(t_{\text{пл}})$ – допускаемый реактивный ток при фактической $t_{\text{пл}}$ в аппаратуре; $I_{\text{Доп}}$ – допускаемый реактивный ток при $t_{\text{пл}}$ =25 °C (P) или $t_{\text{пл}}$ =55 °C (T).

Зависимость изменения емкости конденсаторов от температуры



ГИРИКОНД ____

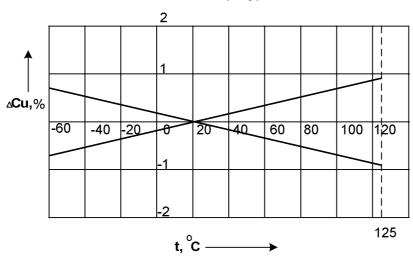
Технические условия: АЖЯР.673516.005 ТУ

Предназначены для работы в цепях постоянного, переменного и пульсирующего токов на частотах до 100 МГц.

Конструкция: защищенные, неизолированные

Группа ТКЕ	МПО
Номинальная емкость, пФ:	1,0 1800
Номинальное напряжение, кВ:	4,0; 2,5; 1,6
Допуск по емкости	±0,25 пФ; ±0,5 пФ для С _{ном} <10 пФ ±5%; ±10%; ±20% для С _{ном} ≥10 пФ
Ряд емкостей	Е12 для С _{ном} <10 пФ; Е24 для С _{ном} ≥10 пФ
Тангенс угла потерь, $tg\delta$, не более	- для С _{ном} ≤10 пФ: не нормируется - для 10 пФ<С _{ном} ≤ 50 пФ: 1,2(150/С _{ном} +7)·10 ⁻⁴ - для С _{ном} > 50 пФ: 0,0012
Сопротивление изоляции, не менее, МОм	10 000
Интервал температур при эксплуатации, °С	-60 +1 25
ТКЕ в интервале температур +20°С +85°С, 10 ⁻⁶ /°С	0±30
Изменение емкости в интервале температур при эксплуатации, %	±1
Климатическое исполнение*	-
Наработка, ч	10 000
Интенсивность отказов, не более, 1/ч	1.10-5
Гамма-процентный срок сохраняемости при γ=99,5%, не менее, лет	25
Масса, г, не более	6

^{*}Конденсаторы применяют только в герметичных невскрываемых объемах или в объемах, в помещениях с искусственно регулируемыми климатическими условиями.

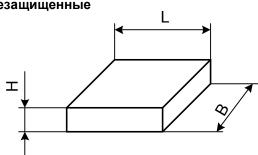

Обозначение при заказе: конденсатор К15-37 – 4 кВ – 330 пФ±5% АЖЯР.673516.005 ТУ

ГИРИКОНД ___

Номинальное напряжение, кВ	4,0	2,5	1,6
Номинальная емкость, пФ	1 390	430 750	820 1800

Промежуточные значения номинальных емкостей соответствуют ряду Е12 для конденсаторов с Сном<10 пФ и Е24 для конденсаторов с С≥10 пФ по ГОСТ 28884-90.

Характер зависимости емкости конденсаторов от температуры



 ΔC_{u} – относительное изменение емкости

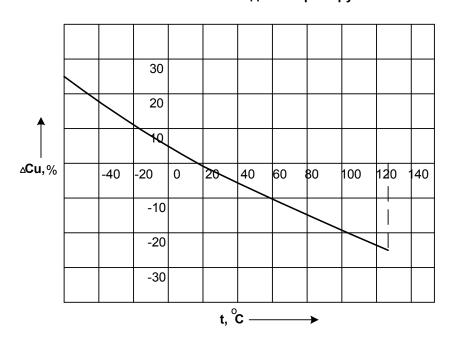
Технические условия: АЖЯР.673511.001 ТУ; АДПК.673511.014 ТУ

Предназначены для работы в цепях постоянного, переменного токов и в импульсных режимах, в том числе в СВЧ устройствах в диапазоне частот до 45 ГГц в герметизированных блоках и микросборках.

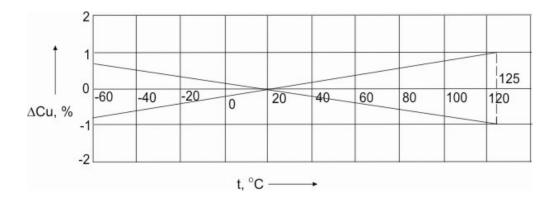
Конструкция: безвыводные, незащищенные

Группа ТСЕ	МПО М1500		H70	H90			
Номинальная емкость, пФ	0,47 12 0,56 56		6,8 1500	15 3300			
Номинальное напряжение, В		100	0				
Допускаемые отклонения емкости,%	- для 5,1 <c<sub>ном ±0,25 пФ; ±0,</c<sub>		- для С _{ном} ≤10 пФ: ±1 пФ - для С _{ном} >10 пФ: ±30%	+80/-20			
Ряд емкостей		E12	E6				
Тангенс угла потерь, tgδ, не более		Ф: не нормируется Ф: 1,5(150/C+7)·10 ⁻⁴	0,035				
Сопротивление изоляции, не менее, МОм		10 000	3000				
Интервал рабочих температур, °С	-60) +125	-60 +85				
Изменение емкости в интервале рабочих температур, %	±1	-25 при t от 20°C до минус 60°C; +25 при t от 20°C до 125°C	±70 ±90				
Климатическое исполнение*		-					
Наработка, ч	50 000; 150 000 (обле	егченный режим: -60	+60°С, U=0,6 U _{ном})				
Интенсивность отказов, не более, 1/ч**		1·10 ⁻⁸	1·10 ⁻⁷				
Срок сохраняемости, не менее, лет***		25					
Масса, мг		0,3 3	0,0				

^{*} Конденсаторы применяют только в герметичных невскрываемых объемах или в объемах, вскрываемых в помещениях с искусственно регулируемыми климатическими условиями.

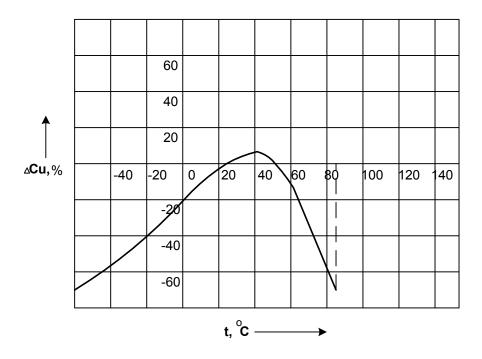

Обозначение при заказе: конденсатор К10-71-1-МП0-0,51 п Φ ±0,25 п Φ -3 АЖЯР.673511.001 ТУ конденсатор К10-71-2-МП0-0,51 п Φ ±0,25 п Φ -3 АДПК.673511.014 ТУ

^{**} Для конденсаторов, выпускаемых по ТУ АДПК.673511.014 ТУ.

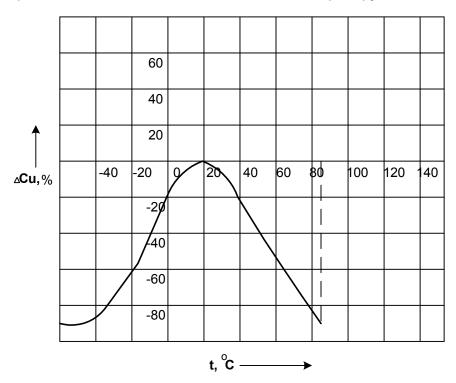

^{***} Обеспечивается только в составе герметизированных блоков и микросборок. Срок сохраняемости конденсаторов с даты отгрузки до их герметизации должен быть 12 мес.

и в	Uos		Размер		Обозначе-					
U _{ном} , B	Hoi	иинальная в	емкость С _{ном}	, ΠΨ	L	В	Н	max	Масса, мг	ние видо-
	МП0	M1500	H70	H90	L	Б	луженый	не луженый		размера
	-	-	6,815	1533	0,23±0,1	0,23±0,1			0,3	1
	-	0,561,2	1533	3368	0,35±0,1	0,35±0,1			0,5	2
	-	1,02,2	2247	68100	0,46±0,1	0,46±0,1			1,0	3
100	0,470,68	70,68 1,53,3 47100		100220	0,60±0,1 0,60	0,60±0,1	0.00	0.21	2,0	4
	0,821,5	3,96,8	100220	220470	0,90±0,2	0,90±0,2	0,33	0,31	3,0	5
	1,83,9	6,815	220; 330	4701000	1,3±0,3	1,3±0,3			5,0	6
	3,96,8	1533	330680	1000; 1500	1,8±0,3	1,8±0,3	-		20,0	7
	6,812,0	2756	6801500	15003300	2,5±0,4	2,5±0,4			30,0	8

Характер зависимости изменения емкости конденсаторов группы М1500 от температуры

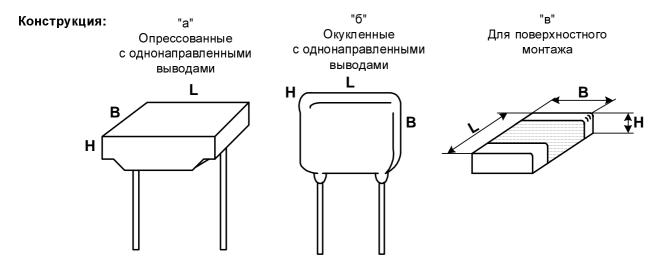


Характер зависимости изменения емкости конденсаторов группы МПО от температуры


 ΔC_u- относительное изменение емкости

Характер зависимости изменения емкости конденсаторов группы Н70 от температуры

 ΔC_u – относительное изменение емкости


Характер зависимости изменения емкости конденсаторов группы Н90 от температуры

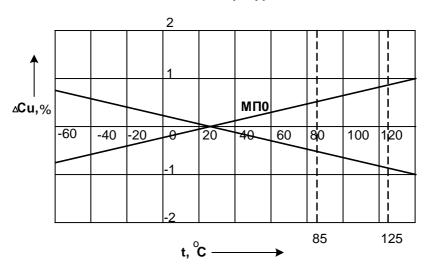
 ΔC_u- относительное изменение емкости

Технические условия: АДПК. 673511. 009 ТУ

Предназначены для эксплуатации в качестве встроенных элементов внутри комплектных изделий в цепях постоянного, переменного, пульсирующего токов и в импульсных режимах. Отличаются высокой точностью и стабильностью емкости.

Группа ТКЕ		МПО
Номинальная ем	кость	21,5 пФ0,0442 мкФ
Номинальное наг	пряжение, В	25; 50
Допуск по емкост	и, %	±1; ±2; ±5
Ряд емкостей		E192
Тангенс угла поте	ерь, tgδ, не более	- для С _{ном} ≤50 пФ: 1,5(150/С _{ном} +7)·10 ⁻⁴ - для С _{ном} >50 пФ: 0,0015
Сопротивление и	золяции, не менее, МОм (для С _{ном} ≤ 0,01 мкФ)	10 000
Постоянная врем	іени, не менее, МОм·мкФ (для С _{ном} >0,01 мкФ)	100
Интервал рабочи	х температур, °C	-60 +125
TKE, 1/°C, 10 ⁻⁶	варианты "а", "б"	для С _{ном} <47 пФ: 0 ⁺¹²⁰ -40 для С _{ном} ≥47 пФ: 0±30
	вариант "в"	0±30
Изменение емкос	сти в интервале рабочих температур, %	±1
	вариант "а"	В 2.1 по ГОСТ 15150-69
Климатическое исполнение	вариант "б"	УХЛ 5.1 по ГОСТ 15150-69
	вариант "в" *	-
Наработка, час		25 000
Срок сохраняемо	сти, лет	15

^{*}Конденсаторы варианта "в" применяют только в герметичных невскрываемых объемах или в объемах, вскрываемых в помещениях с искусственно регулируемыми климатическими условиями.


Обозначение при заказе: конденсатор К10-68а – 50 В – 21,5 пФ ±1% АДПК. 673511. 009 ТУ

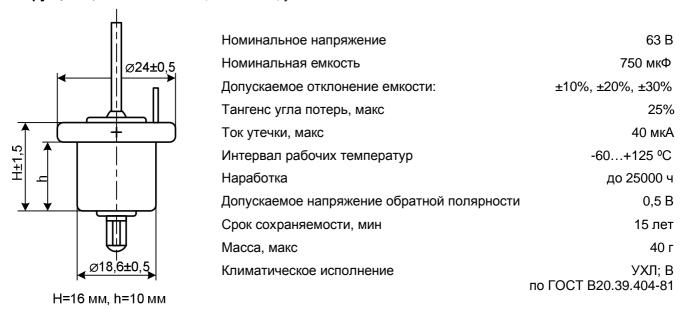
ГИРИКОНД ____

Вариант исполнения	Группа ТКЕ	Габаритные Допуск по емкости, %		Номинальная емкость, Сном				
		LхВхН, мм	,	U _{ном} = 50 В	U _{ном} = 25 В*			
"a"		8,2x4,8x6,5	±1; ±2; ±5	21,5 pF 0,0133 μF	0,0135 0,0442 μF			
a		10,0x6,7x6,5	±1, ±2, ±3	0,0135 0,0442 μF	-			
"G"	"б" МПО 8,2x5,0x5,0 10,0x7,1x5,5	±1; ±2; ±5	21,5 pF 0,0133 μF	0,0135 0,0442 μF				
0		10,0x7,1x5,5	±1, ±2, ±3	0,0135 0,0442 μF	-			
"B"		4,0x2,5x2,4	±1; ±2; ±5	21,5 pF 0,0133 μF	0,0135 0,0442 μF			
В		5,5x4,0x3,0	±1, ±2, ±0	0,0135 0,0442 μF	-			

^{*}Изготавливаются по согласованию

Характер зависимости емкости конденсаторов от температуры

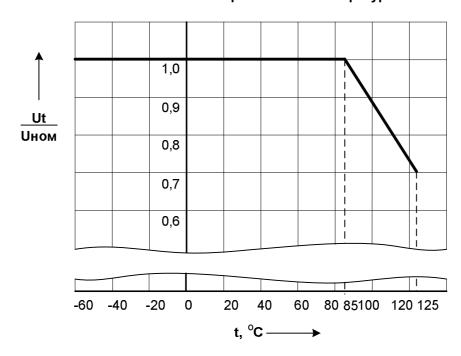
 $\Delta C_{\rm u}$ — относительное изменение емкости


Конденсаторы с оксидным диэлектриком

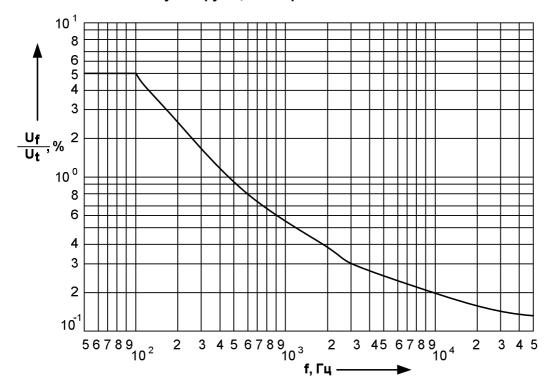
Тип	Назначение	Номинальное напряжение U _{ном,} В	Номинальная емкость С _{ном,} мкФ											
	Танталовые оксидно-электролитические													
K52-7A-1	Общего назначения	63	750											
K52-13	Для работы 3 при повышенных 16 125 температурах до 250 °C		2,2 220											
К52-23 НОВАЯ РАЗРАБОТКА	Энергоемкие	16; 32; 50; 63	3300; 4700; 10000; 2200											
	Танталовые оксидно-г	полупроводниковые												
K53-46 K53-46 OCM		3,250	0,033 100											
K53-56 K53-56 OCM	Общего назначения	3,250	0,1 100											
K53-56A K53-56A OCM	ощего назначения	4,0 50	0,1 330											
K53-67		4,0 50	0,1 680											

Технические условия: ОЖ0.464.176 ТУ

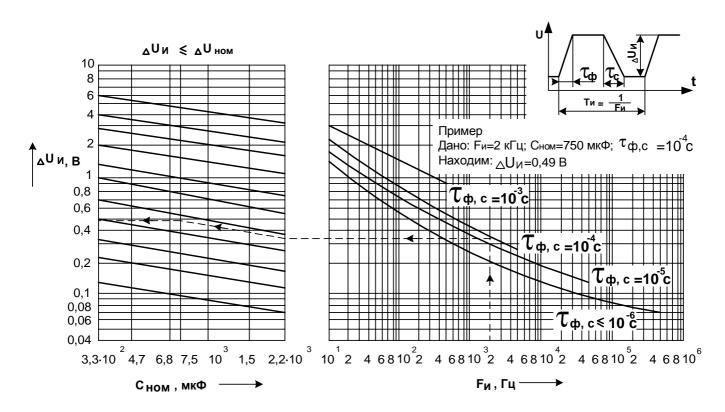
Предназначены для работы в цепях постоянного, пульсирующего токов и в импульсных режимах.


Конструкция: цельнотанталовые, чашечные, уплотненные.

Конденсаторы должны выдерживать кратковременное перенапряжение 1,15 \cdot U $_{\text{ном}}$ в течение 10 с. Конденсаторы должны быть стойкими к воздействию механических факторов.

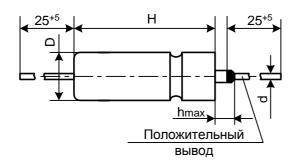

Допускается синусоидальная вибрация в диапазоне частот от 1 до 5000 Γ ц с амплитудой ускорения 200 мс⁻² (20 g).

Зависимость напряжения от температуры



Обозначение при заказе: конденсатор К52-7А-1 - 63 В - 750 мкФ ± 20% - В ОЖ0.464.176 ТУ

Зависимость допускаемой амплитуды переменной синусоидальной составляющей пульсирующего напряжения от частоты


Зависимость допускаемого размаха импульсного напряжения $\Delta \pmb{U}_u$ от частоты следования импульсов \pmb{F}_u , длительности наименьшего из временных интервалов, соответствующих фронту $\pmb{\mathcal{T}}_{\phi}$ или спаду импульса $\pmb{\mathcal{T}}_c$ и номинальной емкости \pmb{C}_{HOM} .

Технические условия: ОЖ0.464.267 ТУ

Предназначены для работы в термостойкой аппаратуре при температурах до 250 ℃.

Конструкция: цельнотанталовые, герметизированные.

Обозначение	Р	азме	Масса, г		
корпуса	D H		hmax	d	макс.
1	4,8	18	6,5	0,6	3,5
2	6,0	20	5,0	0,0	6,5
3	7,5	22	3,0	0,8	10

	Обозначение корпуса										
С _{ном} ,	U _{ном} , B										
мкФ	16	25	50	125							
2,2				1							
4,7				1							
10				2							
15			1								
22				3							
33			2								
68		2	3								
150		3									
220	3										

 Номинальное напряжение
 16...125 В

 Номинальная емкость
 2,2...220 мкФ

 Допускаемое отклонение емкости:
 ±10%, ±20%, ±30%

 Тангенс угла потерь, макс
 30%

 Ток утечки, макс
 (0,002⋅C_{ном}⋅U_{ном}+1) мкА

 Интервал рабочих температур
 -10...+250 °C

Обозначение при заказе: конденсатор К52-13 - 125 B - 22 мкФ ± 20% - ОЖ0.464.267 ТУ.

Конденсаторы должны быть стойкими к воздействию механических факторов, приведенных в таблице:

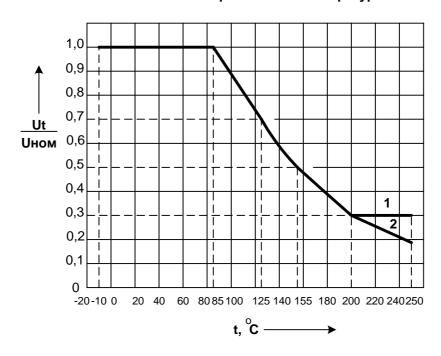
Воздействующий фактор и его характеристики	Значение
возденствующий фактор и его характеристики	характеристики
Синусоидальная вибрация:	
диапазон частот, Гц	1-500
амплитуда ускорения, м⋅с ⁻² (g)	100 (10)
Механический удар:	
одиночного действия:	
пиковое ударное ускорение, м⋅с ⁻² (g)	1500 (150)
многократного действия:	
пиковое ударное ускорение, м⋅с ⁻² (g)	400 (40)

Наработка (в зависимости от рабочей температуры и величины рабочего напряжения)

до 10000 ч

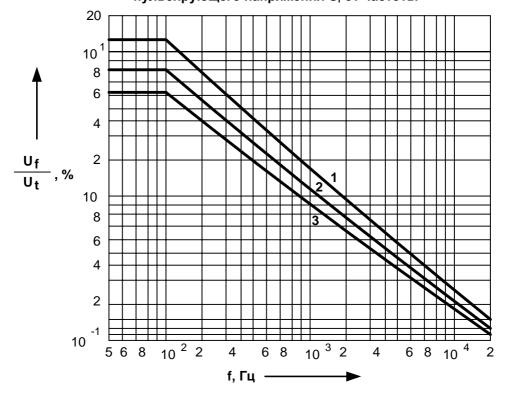
Интенсивность отказов (в течение наработки при нормальных климатических условиях и электрических режимах, допускаемых ТУ)

5·10⁻⁸ 1/ч.


Срок сохраняемости, мин

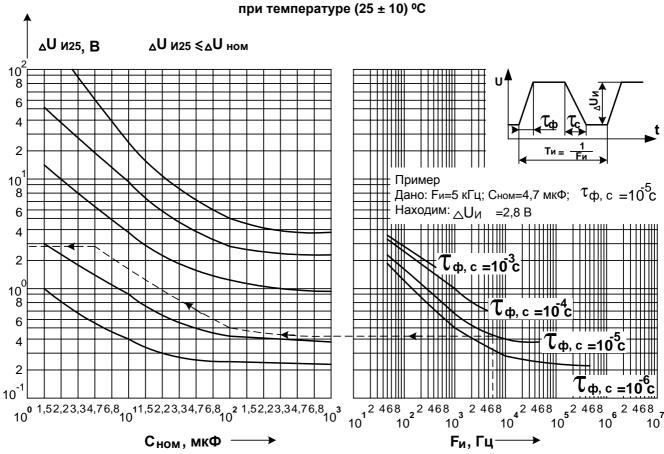
10 лет

Климатическое исполнение


УХЛ 5.1 по ГОСТ 15150-69

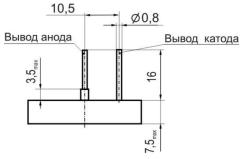
Зависимость напряжения от температуры

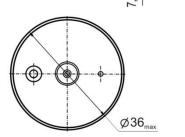
- 1. для конденсаторов на $U_{\text{ном}} = 16$; 25 B;
- 2. для конденсаторов на $U_{\text{ном}} = 50$; 125 В.


Зависимость допускаемой амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_f от частоты

- 1. для конденсаторов на $U_{_{nom}}$ =16; 25 В; 2. для конденсаторов на $U_{_{nom}}$ = 50 В;
- 3. для конденсаторов на $U_{{\scriptscriptstyle HOM}}$ = 125 В

ГИРИКОНД _

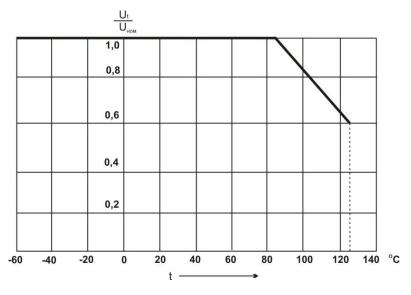

Зависимость допускаемого размаха импульсного напряжения ΔU_{N25} от частоты следования импульсов F_{u} , длительности наименьшего из временных интервалов, соответствующих фронту τ_{ϕ} или спаду импульса τ_{c} и номинальной емкости $C_{\text{ном}}$



Технические условия: АЖЯР.673543.010 ТУ.

Предназначены для применения в режимах постоянного и пульсирующего напряжения, в том числе в накопительных режимах импульсных модуляторов.

Конструкция: герметизированные.

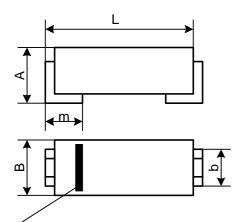

Допускаемое отклонение емкости: Интервал рабочих температур:	±10; ±20; ±30 % -60 +125 °C
Эквивалентное последовательное сопротивление на частоте 100 кГц, не более:	
- при T= +25 ^O C - при T= -60 ^O C	0,1 Ом 0,2 Ом
Ток утечки, не более:	0,005·С _{ном} ·U _{ном} мкА
Эффективное значение $I_{\text{доп эфф}}$ пульсирующего напряжения, не более:	4.0
- в интервале температур -60+85 ^о С - в интервале температур -60+125 ^о С	4 A 2 A
Масса, не более	60 г

25 лет

С _{ном} , мкФ	U _{ном} , В
3 300	63
4 700	50
10 000	32
22 000	16

Срок сохраняемости

Зависимость допускаемого напряжения от температуры



Обозначение при заказе: Конденсатор К52-23-63 B-3300 мкФ±10% АЖЯР.673543.010 ТУ

Технические условия: АДПК.673546.002 ТУ, АЖЯР.673546.000 ТУ, ПО.070.052

Предназначены для работы в составе комплектных изделий в цепях постоянного, пульсирующего токов и в импульсных режимах.

Конструкция: защищенные, безвыводные, полярные

Обозначение		Масса,				
корпуса	L	В	Α	b	m	г макс.
1	3,2±0,2	1,6±0,2	1,6±0,2	1,2±0,1	0,7±0,2	0,05
2	3,6±0,2	2,8±0,2	1,8±0,2	2,0±0,1	0,7±0,2	0,08
3	6,3±0,3	3,2±0,3	2,5±0,3	2,0±0,1	1,3±0,3	0,25
4	7,1±0,3	4,5±0,3	2,8±0,3	3,0±0,1	1,3±0,3	0,5
5	7,1±0,3	4,5±0,3	4,0±0,3	3,0±0,1	1,3±0,3	0,7

Полярность конденсатора обозначена цветной полосой на корпусе со стороны положительного вывода

Номинальное напряжение

3.2...50 B

Номинальная емкость

0,033...100 мкФ

Допускаемое отклонение емкости:

- для конденсаторов с Сном< 1 мкФ

±20%, ±30%

- для остальных конденсаторов

±10%, ±20%, ±30%

Тангенс угла потерь, макс:

- для конденсаторов на U_{ном} = 3,2 В

12% 10%

- для конденсаторов на U_{ном} = 6,3 В

- для конденсаторов на U_{ном} > 6,3 В

 $(0,01\cdot C_{\text{ном}}\cdot\ U_{\text{ном}}+1)$ мкА или 2 мкА

(берется большее значение) -60...+125 °C

Интервал рабочих температур

Наработка, мин

Ток утечки, макс

30000 ч

Наработка, мин (при $U_{HOM} = 0.8 \ B$ и

температуре среды до 70 °C, облегченный режим)

100000 ч

Срок сохраняемости

25 лет

Климатическое исполнение

УХЛ. В

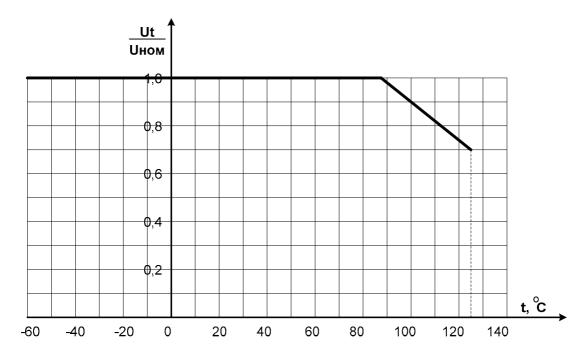
по ГОСТ 15150-69

Допускается эксплуатация конденсаторов при воздействии следующих механических факторов:

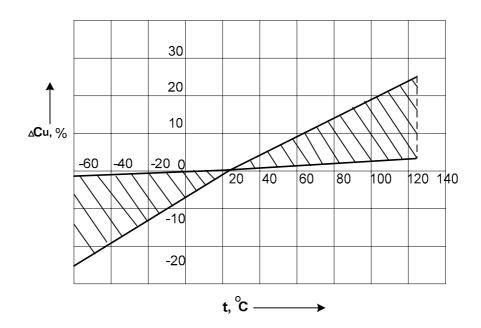
- механический удар одиночного действия с пиковым ударным ускорением 400000 мс⁻² (40000 g) при длительности действия 0,1-2 мс;
- линейное ускорение 150000 мс⁻² (15000 g).

Конденсаторы пригодны как для ручной, так и для автоматизированной сборки аппаратуры.

Обозначение при заказе:


конденсатор K53-46 - 6,3 B - 3,3 мк Φ ± 20% - АДПК.673546.002 ТУ; конденсатор K53-46 - 6,3 B - 3,3 мк Φ ± 20% - В АДПК.673546.002 ТУ; конденсатор K53-46 - 6,3 B - 3,3 мк Φ ± 20% - АЖЯР.673546.000 ТУ; конденсатор K53-46 OCM - $6.3 B - 3.3 \text{ мк}\Phi \pm 20\% - \text{АЖЯР}.673546.000 ТУ, ПО.070.052.$

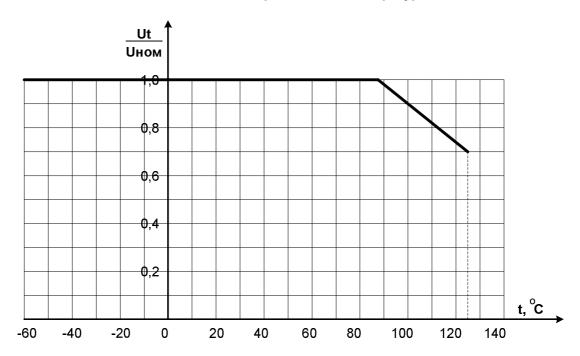
	Обозначение корпуса																	
Сном,				Uно	м, В					Сном, Ином, В								
мкФ	3,2	6,3	10	16	20	32	40	50		мкФ	3,2	6,3	10	16	20	32	40	50
0,033								1		2,2			2				3	4
0,047								1		3,3		2				3		4
0,068								1		4,7	2				3		4	
0,10								1		6,8				3		4		
0,15							1	2		10			3		4	5	5	
0,22						1		2		15		3		4	5			
0,33					1			2		22	3		4	5				
0,47				1			2	3		33		4	5					
0,68			1			2		3		47	4							
1,0		1			2			3		68		5						
1,5	1			2			·	3		100	5						·	


Сном,	Z, Ом, не более для конденсаторов на Uном,								
мкФ	3,2	6,3	10	16	20	32	40	50	
0,681,5								15	
2,2							8	8	
3,3						8		8	
4,7					8		8		
6,8				8		8			
10			8		8	3	3		
15		8		8	3				
22	8		8	3					
33		8	3						
47	8								
68		3							
100	3								

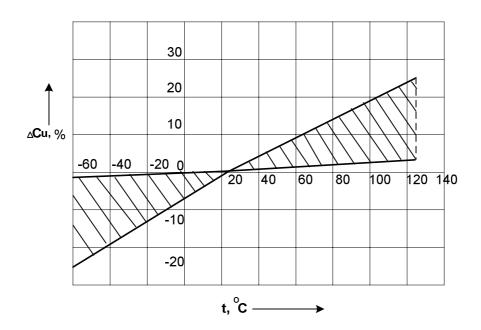
Полное сопротивление (Z) конденсаторов на частоте 100 кГц.

Зависимость напряжения от температуры

Характер зависимости изменения емкости конденсаторов от температуры

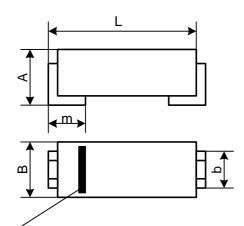


	Обозначение корпуса																	
Сном, Ином, В										Сном,	Uном, B							
мкФ	3,2	6,3	10	16	20	32	40	50		мкФ	3,2	6,3	10	16	20	32	40	50
0,033								1		2,2			2				3	4
0,047								1		3,3		2				3		4
0,068								1		4,7	2				3		4	
0,10								1		6,8				3		4		
0,15							1	2		10			3		4	5	5	
0,22						1		2		15		3		4	5			
0,33					1			2		22	3		4	5				
0,47				1			2	3		33		4	5					
0,68			1			2		3		47	4							
1,0		1			2			3		68		5						
1,5	1			2				3		100	5							


Сном,	Z, O	Z, Ом, не более для конденсаторов на Uном, В									
мкФ	3,2	6,3	10	16	20	32	40	50			
0,681,5								15			
2,2							8	8			
3,3						8		8			
4,7					8		8				
6,8				8		8					
10			8		8	3	3				
15		8		8	3						
22	8		8	3							
33		8	3								
47	8										
68		3									
100	3										

Полное сопротивление (Z) конденсаторов на частоте 100 кГц.

Зависимость напряжения от температуры


Характер зависимости изменения емкости конденсаторов от температуры

Технические условия: АДПК.673546.005 ТУ, АЖЯР.673546.001 ТУ, ПО.070.052.

Предназначены для работы в цепях постоянного, пульсирующего токов и в импульсных режимах. Дополняют серию K53-46, отличаясь меньшими габаритами.

Конструкция: защищенные, безвыводные, полярные

Обозначение		Масса,					
корпуса	L	В	Α	b	m	г макс.	
1	3,2±0,2	1,6±0,2	1,6±0,2	1,2±0,1	0,7±0,2	0,05	
2	3,6±0,2	2,8±0,2	1,8±0,2	2,0±0,1	0,7±0,2	0,08	
3	6,3±0,3	3,2±0,3	2,5±0,3	2,0±0,1	1,3±0,3	0,25	
4	7,1±0,3	4,5±0,3	2,8±0,3	3,0±0,1	1,3±0,3	0,5	
5	7,1±0,3	4,5±0,3	4,0±0,3	3,0±0,1	1,3±0,3	0,7	

Полярность конденсатора обозначена цветной полосой на корпусе со стороны положительного вывода

Номинальное напряжение

3.2 ... 50 B

Номинальная емкость

0,1 ... 100 мкФ

Допускаемое отклонение емкости:

- для конденсаторов с $C_{\text{ном}} < 1 \ \text{мк} \Phi$

±20%, ±30%

- для остальных конденсаторов

±10%, ±20%, ±30%

Тангенс угла потерь, макс:

- для конденсаторов на $U_{\text{ном}}$ = 3,2 B

12% 10%

- для конденсаторов на $U_{\text{ном}} = 6.3 \text{ B}$

8%

- для конденсаторов на U_{ном} > 6,3 В

(0,01-С_{ном}-U_{ном}+1) мкА или 2 мкА

(берется большее значение)

Интервал рабочих температур

-60 ... +125 °C

Наработка, мин

Ток утечки, макс

50000 ч

Наработка, мин (при $U_{HOM} = 0.8 \ B$ и

температуре среды до 70 °С, облегченный режим)

100000 ч

Срок сохраняемости

25 лет

Климатическое исполнение

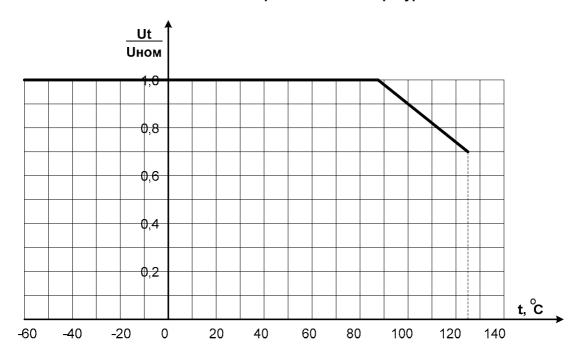
УХЛ, В по ГОСТ 15150-69

Допускается эксплуатация конденсаторов при воздействии следующих факторов:

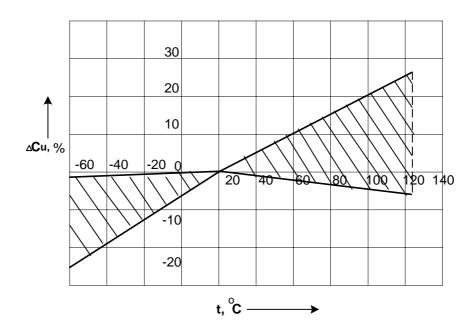
- механический удар одиночного действия с пиковым ударным ускорением 400000 мс⁻²
 (40000 g) при длительности действия 0,1-2 мс;
- линейное ускорение 150000 мс⁻² (15000 g).

Конденсаторы пригодны как для ручной, так и для автоматизированной сборки аппаратуры.

Обозначение при заказе:

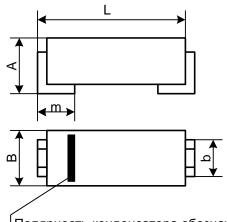

конденсатор K53-56 - 3,2 B - 3,3 мкФ \pm 20% - АЖЯР.673546.001 ТУ; конденсатор K53-56 ОСМ - 3,2 B - 3,3 мкФ \pm 20% - АЖЯР.673546.001 ТУ; ПО.070.052. конденсатор K53-56 - 10 B - 47 мкФ \pm 10% - АЖЯР.673546.001 ТУ (для конденсаторов, отмеченных "*", с размером A = 4,0 мм).

	Обозначение корпуса																	
Сном,				Uно	м, В					Сном,				Uно	м, В			
мкФ	3,2	6,3	10	16	20	32	40	50		мкФ	3,2	6,3	10	16	20	32	40	50
0,1								1		4,7				2		3	4	
0,15							1	2		6,8			2		3	4		
0,22						1		2	Ī	10		2			3	4		
0,33						1		2	Ī	15	2			3	4	5		
0,47					1		2	3		22			3		4,5			
0,68					1	2		3	Ī	33		3		4,5				
1				1		2		3	Ī	47	3		4,5					
1,5			1		2			3		68		4						
2,2		1			2		3	4		100	4							
3,3	1				2	3		4	Ī									


Сном,	Z, O	м, не б	более д	для кон	нденса	торов і	на Uно	м, В
мкФ	3,2	6,3	10	16	20	32	40	50
0,68								15
1						15		15
1,5					15			15
2,2					15		8	8
3,3					15	8		8
4,7				15		8	8	
6,8			15		8	8		
10		15			8	3		
15	15			8	3			
22			8		3			
33		8		3				
47	8		3					
68		3						
100	3							

Полное сопротивление (Z) конденсаторов на частоте 100 кГц.

Зависимость напряжения от температуры


Характер зависимости изменения емкости конденсаторов от температуры

Технические условия: АДПК.673546.005, АЖЯР.673546.001 ТУ

Предназначены для работы в цепях постоянного, пульсирующего токов и в импульсных режимах и в условиях воздействия высоких механических нагрузок.

Конструкция: защищенные, безвыводные, полярные

Полярность конденсатора обозначена	
цветной полосой на корпусе со сторонь	Ы
положительного вывода	

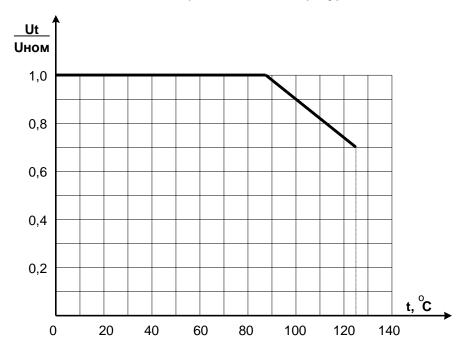
Обозначение		Размеры*, мм										
корпуса	L	В	Α	b	m							
1	3,2±0,2	1,6±0,2	1,6±0,2	1,2±0,1	0,7±0,2							
2	3,6±0,2	2,8±0,2	1,8±0,2	2,0±0,1	0,7±0,2							
3	6,3±0,3	3,2±0,3	2,5±0,3	2,0±0,1	1,3±0,3							
4	7,1±0,3	4,5±0,3	2,8±0,3	3,0±0,1	1,3±0,3							
5	7,1±0,3	4,5±0,3	4,0±0,3	3,0±0,1	1,3±0,3							

^{*}Габаритные размеры соответствуют требованиям МЭК

4,0... 50 B Номинальное напряжение Номинальная емкость 0,1 ... 330 мкФ Допускаемое отклонение емкости: ±10%, ±20%, ±30% 6 ... 10% Тангенс угла потерь, макс: $(0,01\cdot C_{HOM}\cdot U_{HOM}+1)$ или 2 мкА Ток утечки, макс (берется большее значение) -60 ... +125 °C Интервал рабочих температур 50 000 ч Наработка, мин. Наработка, мин. (в облегченном режиме) 100 000 ч Срок сохраняемости, мин. 25 лет Климатическое исполнение УХЛ: В по ГОСТ 15150-69

Допускается эксплуатация конденсаторов при воздействии следующих факторов:

- механический удар одиночного действия с пиковым ударным ускорением 400 000 мс⁻² (40000 g) при длительности действия 0,1-2 мс;
- линейное ускорение 150 000 мс⁻² (15000 g).


Конденсаторы пригодны как для ручной, так и для автоматизированной сборки аппаратуры.

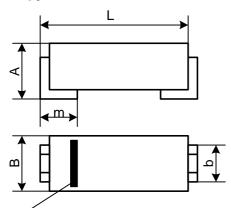
Обозначение при заказе:

конденсатор K53-56A - 4 B - 6,8 мкФ \pm 10%-B - АЖЯР.673546.001 ТУ конденсатор K53-56A - 4 B - 6,8 мкФ \pm 20% - АДПК.673546.005ТУ

	Обозначение корпуса																			
				Γ	Іолно	е соп	ротив	злени	е Zма	ıKC,	Ом (на	част	_ оте 10	00 кГ	ц)					
Сном,				ι	J _{ном} , Е	3					С _{ном} ,	U _{HOM} , B								
мкФ	4,0	6,3	10	16	20	25	32	40	50		мкФ	4,0	6,3	10	16	20	25	32	40	50
0,10								1	1		6,8	1	<u>2</u> 15	<u>2</u> 15	<u>2</u> 15	<u>3</u> 8	<u>3</u> 8	<u>3</u> 8	<u>4</u> 8	<u>5</u> 5
0,15							1	1	1		10	<u>2</u> 15	<u>2</u> 15	<u>2</u> 15	<u>3</u> 8	<u>3</u> 8	<u>3</u> 5	<u>4</u> 3	<u>5</u> 5	<u>5</u> 5
0,22						1	1	1	2		15	<u>2</u> 15	<u>2</u> 15	<u>3</u> 8	<u>3</u> 8	<u>3</u> 5	<u>4</u> 3	<u>4</u> 3	<u>5</u> 5	
0,33					1	1	1	2	2		22	<u>2</u> 15	<u>3</u> 8	<u>3</u> 8	<u>3</u> 5	<u>4</u> 3	<u>4</u> 2	<u>5</u> 2		
0,47				1	1	1	1	2	2		33	<u>3</u> 8	<u>3</u> 8	<u>3</u> 5	<u>3</u> 3	<u>4</u> 2	<u>5</u> 2			
0,68			1	1	1	1	2	2	<u>3</u> 15		47	<u>3</u> 8	<u>3</u> 5	<u>3</u> 3	<u>4</u> 2	<u>5</u> 2	<u>5</u> 2			
1,0		1	1	1	1	2	<u>2</u> 15	<u>3</u> 15	<u>3</u> 15		68	<u>3</u> 5	<u>3</u> 3	<u>4</u> 2	<u>4</u> 2	<u>5</u> 2				
1,5	1	1	1	1	<u>2</u> 15	<u>2</u> 15	<u>2</u> 15	<u>3</u> 15	<u>3</u> 15		100	<u>3</u> 3	<u>4</u> 2	<u>4</u> 2	<u>5</u> 1,5					
2,2	1	1	1	<u>1</u> 20	<u>2</u> 15	<u>2</u> 15	<u>3</u> 8	<u>3</u> 8	<u>3</u> 8		150	<u>4</u> 2	<u>4</u> 2	<u>5</u> 1,5						
3,3	1	1	<u>1</u> 20	<u>2</u> 15	<u>2</u> 15	<u>3</u> 8	<u>3</u> 8	<u>3</u> 8	<u>4</u> 8		220	<u>4</u> 2	<u>5</u> 1,5							
4,7	1	1	<u>2</u> 15	<u>2</u> 15	<u>3</u> 8	<u>3</u> 8	<u>3</u> 8	<u>4</u> 8	<u>4</u> 8		330	<u>5</u> 1,5								

Зависимость напряжения от температуры

Характер зависимости изменения емкости конденсаторов от температуры



Новая разработка

Технические условия: АЖЯР.673546.006 ТУ

Предназначены для работы в цепях постоянного, пульсирующего токов и в импульсных режимах. Имеют самую широкую шкалу номиналов и самый высокий удельный заряд среди всех типов танталовых чип-конденсаторов.

Конструкция: защищенные, безвыводные, полярные

Обозначение		Масса,				
корпуса	L	Α	В	b	m	г макс.
1	3,2±0,2	1,6±0,2	1,6±0,2	1,2±0,1	0,7±0,2	0,04
2	3,6±0,2	1,8±0,2	2,8±0,2	2,0±0,1	0,7±0,2	0,065
3	6,3±0,3	2,5±0,3	3,2±0,3	2,2±0,1	1,3±0,3	0,25
4	7,1±0,3	2,8±0,3	4,5±0,3	3,0±0,1	1,3±0,3	0,4
5	7,1±0,3	4,0±0,3	4,5±0,3	3,0±0,1	1,3±0,3	0,6

Полярность конденсатора обозначена цветной полосой на корпусе со стороны положительного вывода

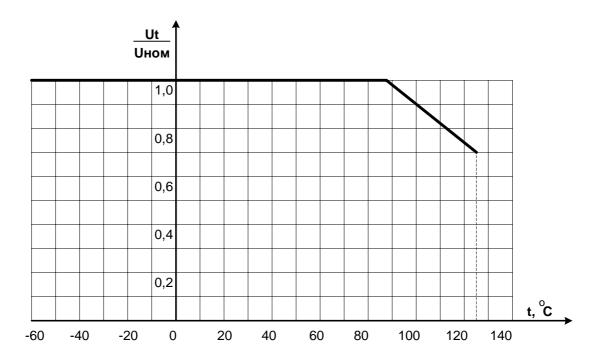
Конденсаторы пригодны как для ручной, так и для автоматизированной сборки аппаратуры по ГОСТ 21415 (указать в договоре на поставку).

Номинальное напряжение	4 50 B
Номинальная емкость	0,1 680 мкФ
Допускаемое отклонение емкости	±10; ±20%
Тангенс угла потерь, макс: - для конденсаторов на U _{ном} = 4 В - для конденсаторов на U _{ном} = 6,3 В - для конденсаторов на U _{ном} > 6,3 В	12% 10% 8%
Ток утечки, макс	(0,01·С _{ном} ·U _{ном} +1)мкА или 2 мкА (берется большее значение)
Интервал рабочих температур	-60 +125 °C
Наработка, мин	25000 ч
Срок сохраняемости	25 лет
Интенсивность отказов:	
 при эксплуатации в предельно допустимом режиме в течение наработки 25000 ч в пределах срока службы 25 лет, макс 	5·10 ⁻⁶ 1/ч
- в облегченном режиме эксплуатации при температуре -60 +55 °C и напряжении 0,2-0,6 U _{ном} в течение наработки 150000 ч в пределах срока службы 25 лет	1-10 ⁻⁶ 1/ч
Климатическое исполнение	В 5.1 по ГОСТ 15150

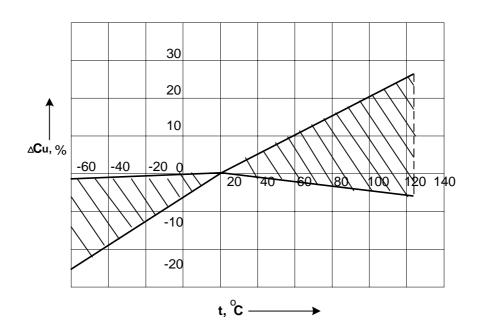
Обозначение при заказе: конденсатор К53-67 - 6,3 В - 6,3 мкФ \pm 10% - АЖЯР.673546.006 ТУ

	Обозначение корпуса																			
C _{HOM} ,				U	ном,	В					C _{HOM} ,	C _{HOM} , B								
мкФ	4	6,3	10	16	20	25	32	40	50		мкФ	4	6,3	10	16	20	25	32	40	50
0,10									1		10	1	1	2	2	3	3	4	5	5
0,15									1		15	1	2	2	3	3	4	4	5	
0,22								1	2		22	2	2	2	3	3	4	5		
0,33								1	2		33	2	2	3	3	4	5	5		
0,47							1	2	2		47	2	3	3	4	4	5			
0,68							1	2	3		68	3	3	3	4	5				
1,0						1	2	2	3		100	3	3	4	5	5				
1,5					1	2	2	3	3		150	3	4	4	5					
2,2					1	2	2	3	3		220	4	4	5						
3,3				1	2	2	3	3	4		330	4	5	5						
4,7			1	2	2	3	3	4	4		470	5	5							
6,8		1	1	2	2	3	3	4	5		680	5								

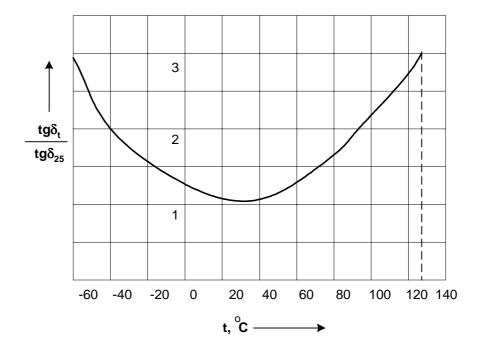
Сном,		Z, Ом,	не бол	ее для	і кондє	енсатор	ов на	U _{ном} , Е	3
мкФ	4	6,3	10	16	20	25	32	40	50
0,68									15
1,0							15	15	15
1,5					20	15	15	15	15
2,2					20	15	8	8	8
3,3				20	15	8	8	8	8
4,7			25	15	8	8	8	8	5
6,8		25	20	15	8	8	5	5	3
10	25	20	15	8	8	5	3	3	3
15	20	15	8	8	5	3	3	3	
22	15	8	8	5	3	2	2		
33	8	8	5	3	2	2	2		
47	8	5	3	2	2	2			
68	5	3	2	2	1,5				
100	3	2	2	1,5	1				
150	2	2	1,5	1					
220	2	1,5	1						
330	1,5	1	1						
470	1	1						·	
680	1								


Полное сопротивление Z конденсаторов на частоте 100 кГц.

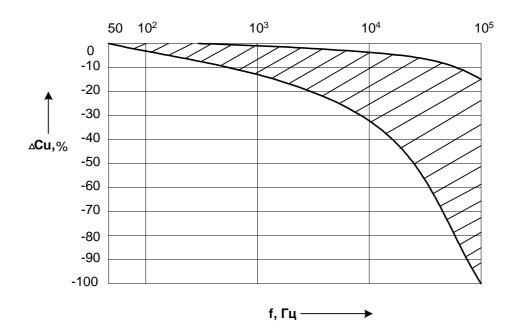
Конденсаторы должны быть стойкими к воздействию механических, климатических и биологических факторов по группе 6Усогласно ГОСТ РВ 20.39.414.1.


Воздействующий фактор, его характеристики и единицы измерения	Значение характеристики
Механические факторы	
Синусоидальная вибрация:	
- диапазон частот, Гц	1-5000
- амплитуда ускорения, м/с² (q)	400 (40)
Механический удар:	
одиночного действия:	
- пиковое ударное ускорение, м/с² (q)	30000 (3000)
- длительность действия ударного ускорения, мс	0,1-2
многократного действия:	
- пиковое ударное ускорение, м/с² (q)	1500 (150)
- длительность действия ударного ускорения, мс	1-5
Акустический шум:	
- диапазон частот, Гц	50-10000
- уровень звукового давления (относительно 2⋅10 ⁻⁵ Па), дБ	175
Линейное ускорение, м/c² (q)	5000 (500)
Климатические факторы:	
Повышенная температура среды:	
- максимальное значение при эксплуатации, °С	125
- максимальное значение при транспортировании и хранении, °C	70
Пониженная температура среды:	
- минимальное значение при эксплуатации, °С	-60
- минимальное значение при транспортировании и хранении, °C	-60
Изменение температуры среды:	
- от максимального значения температуры при эксплуатации, °С	125
- до минимального значение температуры при транспортировании и	
хранении, °С	-60
Повышенная относительная влажность воздуха при температуре 35 °C	98
Атмосферное пониженное давление:	
- значение при эксплуатации, Па (мм рт.ст.)	133·10 ⁻⁶ (10 ⁻⁶)
- значение при авиатранспортировании, Па (мм рт.ст.)	1,2·10 ⁴ (90)
Атмосферное повышенное давление:	
- значение при эксплуатации, Па (мм рт.ст.)	2,92·10 ⁵ (2207)
Атмосферные конденсированные осадки (иней, роса)	+
Соляной (морской) туман	+
Биологические факторы:	
Плесневые грибы	+

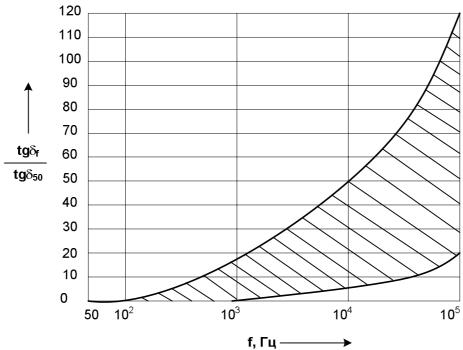
Знак «+» означает, что требование предъявляют.


Зависимость напряжения от температуры

Характер зависимости изменения емкости конденсаторов от температуры

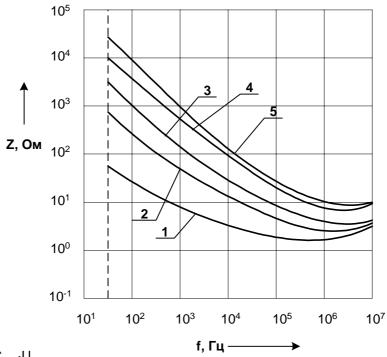


Характер зависимости тангенса угла потерь конденсаторов от температуры



 $tg\delta_{25}$ — тангенс угла потерь конденсаторов при температуре 25 °C $tg\delta_t$ — тангенс угла потерь конденсаторов при заданной температуре

Характер зависимости изменения емкости конденсаторов от частоты



Характер зависимости тангенса угла потерь конденсаторов от частоты

 $tg\delta_{50}$ – тангенс угла потерь конденсаторов частоте 50 Гц $tg\delta_{\rm f}$ – тангенс угла потерь конденсаторов на заданной частоте

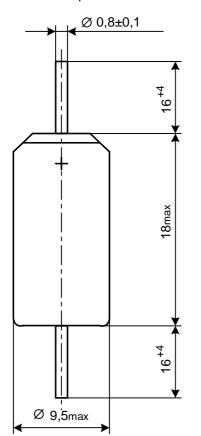
Характер зависимости полного сопротивления конденсаторов от частоты при температуре (25±10) °C

Для конденсаторов с $C_{\text{ном}} \cdot U_{\text{ном}}$

- 1. 4 В-330 мкФ; 6,3 В-220 мкФ; 10 В-150 мкФ; 16 В-100 мкФ; 20 В-68 мкФ
- $2.4 B \cdot 100 \div 220$ μκΦ; $6.3 B \cdot 68$ μκΦ; $10 B \cdot 47$ μκΦ; $16 B \cdot 33$ μκΦ; $20 B \cdot 22$ μκΦ; $25 B \cdot 15$ μκΦ; $32 B \cdot 10$, 15 μκΦ; $40 B \cdot 10$, 15 μκΦ; $50 B \cdot 6.8$, 10 μκΦ
- $3.~4~B\cdot 33,~47~$ мк $\Phi;~6,3~B\cdot 22,~33~$ мк $\Phi;~10~B\cdot 15,~22~$ мк $\Phi;~16~B\cdot 10,~15~$ мк $\Phi;~20~B\cdot 4,7\div 10~$ мк $\Phi;~25~B\cdot 3,3\div 6,8~$ мк $\Phi;~32~B\cdot 2,2\div 4,7~$ мк $\Phi;~40~B\cdot 2,2\div 4,7~$ мк $\Phi;~50~B\cdot 2,2,~3,3~$ мк Φ
- 4. 4 B·22 ΜΚΦ; 6,3 B·15 ΜΚΦ; 10 B·10 ΜΚΦ; 16 B·4,7÷6,8 ΜΚΦ; 20 B·3,3 ΜΚΦ; 25 B·1,5, 2,2 ΜΚΦ; 32 B·1,0, 1,5 ΜΚΦ; 40 B·1,0, 1,5 ΜΚΦ; 50 B·0,68÷1,5 ΜΚΦ
- 5. 4 В·10 мкФ; 6,3 В·6,8 мкФ; 10 В·4,7 мкФ

Ионисторы по принципу действия, параметрам и характеристикам занимают промежуточное положение между конденсаторами и перезаряжаемыми химическими источниками тока (аккумуляторами):

- в отличие от конденсаторов имеют более высокую удельную энергию;
- в отличие от аккумуляторов высокий срок службы и большое количество циклов в режиме «зарядка-разрядка»


Ионисторы на основе твердого электролита

Тип	Тип U _{ном} , В		Характерные особенности
K58-12	7,5	0,1	Малые габариты; число срабатываний в типовом режиме эксплуатации ≥ 150; использование в исполнительных устройствах с рабочим напряжением 7,5 В
<u>К58-24</u> новая разработка	1.3 8.0	0.1 100	Герметичные, спецстойкие и ударостойкие твёрдотельные ионисторы с повышенной удельной энергией.

Технические условия: АЖЯР.673623. 001 ТУ - приемка «5»

Предназначены для эксплуатации в цепях постоянного тока в режиме «зарядка-разрядка».

Конструкция: уплотненные, в цилиндрическом металлическом корпусе, защищенные компаундом, полярные

Номинальная емкость		0,1 Ф
Номинальное напряжение		7,5 B
Допускаемое отклонение емко	ости	+50 %
Внутреннее сопротивление		≤15 Ом
Интервал рабочих температур	o	-15 +50 °C
Режим работы		циклический
Наработка (в типовом режиме	эксплуатаци	и
в пределах срока службы – 12	2 лет)	150 циклов
Срок сохраняемости, мин		20 лет
Климатическое исполнение	УХЛ 2.1 по Г	OCT 15150-69

Масса, не более 9 г

Параметры типового режима эксплуатации (одного цикла):

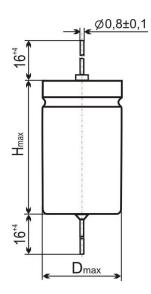
- зарядка от источника постоянного тока напряжением	(7,5±0,1) B
- сопротивление зарядки (ограничительный резистор)	(250±1) Ом
- время зарядки	(100±1) c
- сопротивление разрядки	(7500±20) Ом
- время разрядки	(110±1) c
- остаточное напряжение после разрядки, мин	6,2 B

Параметры электрических режимов эксплуатации (предельно допустимые):

- допускаемое напряжение разрядки, мин	2 B
- допускаемый ток разрядки, макс	0,03 A

Обозначение при заказе: Ионистор К58-12 – 7,5 В - 0,1 Ф+50% АЖЯР.673623. 001 ТУ

Ионистор должен быть стойким к воздействию механических и климатических факторов:


Воздействующий фактор, его характеристики и единицы измерения	Значение характеристики
Механические факторы	
Синусоидальная вибрация:	
- диапазон частот, Гц	1-2000
- амплитуда ускорения, м/с² (q)	200 (20)
Механический удар:	
одиночного действия:	
- пиковое ударное ускорение, м/с² (q)	15000 (1500)
- длительность действия ударного ускорения, мс	0,1-2
многократного действия:	
- пиковое ударное ускорение, м/с² (q)	400 (40)
- длительность действия ударного ускорения, мс	2-10
Акустический шум:	
- диапазон частот, Гц	50-10000
- уровень звукового давления (относительно 2·10 ⁻⁵ Па), дБ	160
Линейное ускорение, м/с ² (q)	5000 (500)
Климатические факторы	
Повышенная температура среды:	
- максимальное значение при эксплуатации, °С	50
- максимальное значение при транспортировании и хранении, °C	70
Пониженная температура среды:	
- минимальное значение при эксплуатации, °С	-15
- минимальное значение при транспортировании и хранении, °C	-60
Изменение температуры среды:	
- от максимального значения при эксплуатации, °C	50
- до минимального значения при транспортировании и хранении, °C	-60
Повышенная относительная влажность воздуха при температуре 25 °C, %	98
Атмосферное пониженное давление:	
- значение при эксплуатации, кПа (мм рт.ст.)	133·10 ⁻³ (10 ⁻⁶)
- значение при авиатранспортировании, кПа (мм рт.ст.)	12 (90)
Атмосферное повышенное давление:	
- значение при эксплуатации, кПа (мм рт.ст.)	292 (2207)
Атмосферные конденсированные осадки (иней, роса)	+

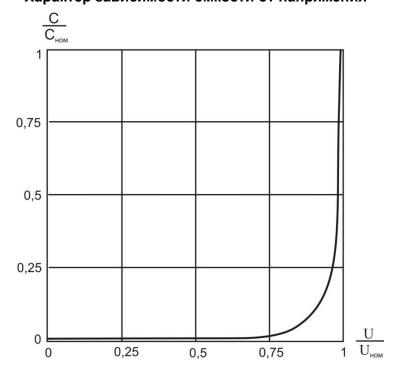
Примечание: знак «+» означает, что требование предъявляют.

Технические условия: АЖЯР.673623.003 ТУ

Предназначены для эксплуатации в цепях постоянного тока в режиме «зарядка-разрядка» в качестве источника питания аппаратуры специальных автономных объектов.

Конструкция: герметизированные, полярные.

	D _{max} =9	9,0 мм	D _{max} =20,5 мм				
U _{ном} , В	С _{ном} , Ф	H _{max}	Масса,г, не более	U _{ном} , В	С _{ном} , Ф	H _{max}	Масса, г, не более
1,3	22	10,0	4,5	1,3	100	13,0	32,0
2,0	22	11,0	5,0	2,0	100	14,5	34,5
2,6	15	12,0	6,0	2,6	62	16,0	37,0
3,3	10	13,0	6,5	3,3	47	17,5	39,5
4,0	10	14,0	7,0	4,0	47	19,0	42,0
5,2	6,8	16,0	8,0	5,2		22,0	47,0
6,6	6,2	18,0	9,0	6,6	00	25,0	52,0
9.0	0,1	16,0	5,0	9.0	33	28,0	57,0
8,0	4,7	20,0	10,0	8,0		20,0	37,0


Допускаемое отклонение емкости: +50/-20 % (+80/-20 %)

Интервал рабочих температур: -60 ... +125 $^{\circ}$ C

Механический удар одиночного действия: 50 000g Срок сохраняемости 12 лет

Стойкость к воздействию специальных факторов соответствует группе исполнения 4Ус.

Характер зависимости емкости от напряжения

Обозначение при заказе: Ионистор К58-24-1,3 B-22 Ф АЖЯР.673623.003 ТУ

Конденсаторы с органическим диэлектриком

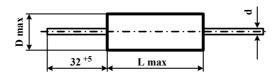
Тип	U _{ном} , В	С _{ном} , мкФ							
	Общего назначения								
K73-11	63 1600	0,001 1	00						
K73-14M	4000 25000	0,00047 0,1							
K74-7	16000	150; 390							
K73-17	63 630	0,01 4,	7						
К73-24в	63 630	0,001 6	,8						
K73-31	63 630	0,001 0,	22						
K73-50	63 1600	0,33 15	50						
K73-76	250; 400; 630	1 100							
K78-2	250 2000	0,001 2	.,2						
K78-5	2000	470 пФ 0,04	7 мкФ						
К78-10 б, в, г	250 2000	0,001 2	,2						
K78-11	200	0,01 2	2						
K78-12	8-12 500 2000 0,001 15								
K78-16	100	0,001 0,1							
K78-19	200	0,01 22							
	Высоковольтные, энергоемкие и мог	цные конденсаторы							
K75-15	3000 50000	0,0051 10,0							
К75-29 Б	16000 40000	0,1 1,0							
K75-59*	1000	2,0 10							
K75-62	4000; 6300; 12500	0,1 1,0							
K75-63	2500 40000	0,01 10							
K75-81	1000 6300	2,0 200							
	Помехоподавляющ	ие							
Тип	U _{HOM} , B	С _{ном} , мкФ	I _{HOM} , A						
К73-21б, г	50_; 160_; 250_/127~; 500_/250~	0,1 10	4; 6,3; 10						
К73-21в	500	0,47; 1,0	4						
К73-43 а, б, в	250 В эфф.	0,1+2x0,0022 0,68+2x0,01 10 (возможно сочетание для вар. "в" других ном. емкостей)							
K73-56	160_/50~; 250_/127~; 500_/250~; 1000_/380~; 1600_/380~	0,022 2,2; 10 25; 40; 63							
K73-57	250_/127~; 500_/250~; 800_/380~; 1000_/500~	0,047 4,7	-						

Технические условия: АДПК.673633.013 ТУ

АЖЯР.673633.002 ТУ

Предназначены для работы в цепях постоянного, переменного, пульсирующего токов и в импульсных режимах.

Могут применяться взамен К73-16, МБМ, МБГЦ, МБГО, К42У-2.


Конструкция: обернуты липкой лентой, залиты по торцам эпоксидным компаундом.

Specifications: АДПК.673633.013 ТУ АЖЯР.673633.002 ТУ

Designed to operate in DC, AC and ripple current circuits and in pulse mode.

Can be used instead of K73-16, МБМ, МБГЦ, МБГО, K42У-2.

Design: wrapped with adhesive tape; capacitor ends sealed with epoxy compound.

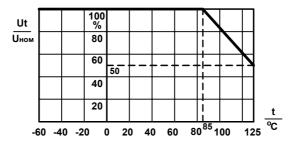
Номинальная емкость	0,001 100 мкФ	Rated capacitance	0,001 100 μF
Номинальное напряжение (в интервале температур -60°С+85°С)	50; 63; 100; 160; 250; 400; 630; 1000; 1600 B	Rated voltage (temperature range -60°C+85°C)	50; 63; 100; 160; 250; 400; 630; 1000; 1600 V
Допускаемое отклонение емкости	±5; ±10; ±20 %	Capacitance tolerance	±5; ±10; ±20 %
Тангенс угла потерь при f = 1кГц	≤0,012	Dissipation factor at f = 1 kHz	≤0,012
Сопротивление изоляции для Сном ≤ 0,33 мкФ Uном = 50–100 В Uном ≥ 160 В	>12 000 MOm	Insulation resistance at $Cr \le 0.33~\mu F$ $Ur = 50-100~V$ $Ur \ge 160~V$	>12 000 MOhm
CHOM ≥ 100 B	>30 000 MOM	01 ≥ 100 V	>30 000 MOhm
Постоянная времени для Сном > 0,33 мкФ Ином = 50–100 В	_50 000 110.11	Time constant at Cr > 0,33 μF Ur = 50–100 V	_50 000 115 1111
Uном ≥ 160 B	≥4000 МОм·мкФ ≥10 000 МОм·мкФ	Ur ≥ 160 V	≥ 4000 MOhm·µF ≥10 000 MOhm·µF
Интервал рабочих температур для Uном = 250 B, Сном \geq 2,7 мкФ	-60+125°C -60+85°C	Operating temperature range at Ur = 250 V, Cr \geq 2,7 μ F	-60+125°C -60+85°C
Изменение емкости в интервале положительных температур	≤18%	Capacitance change within positive temperature range	≤18%
Наработка при рабочей температуре до125°C при рабочей температуре до 70°C	15 000 ч 20 000 ч	Operating time operating temperature up to 125°C operating temperature up to 70°C	15 000 hours 20 000 hours
Срок сохраняемости	20 лет	Shelf life	20 years
Климатическое исполнение	В (93±3% отн. влажности при 40±2°C, 21 сутки)	Climatic categories	RH 93±3%, 40±2°C, 21 days

Обозначение при заказе:

Конденсатор К73-11 - 250 В - 1,5 мкФ ±10% - - №ТУ

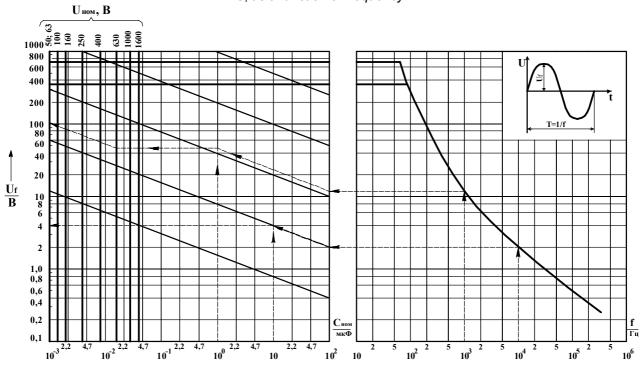
Ordering example:

Capacitor K73-11 - 250 V - 1,5 μF ±10% - - №TУ


C _{ном} ,	ι	J _{ном} =50 В	/ U _r =50	v	ι	J _{ном} =63 В	3 / U _r =63	v	U,	юм=100 В	3 / U _r =10	0 V				
мкФ С _{г,} µF	D _{max} , mm	L _{max} , mm	d, mm	Macca,r Mass, g max	D _{max} , mm	L _{max} , mm	d, mm	Macca,r Mass, g max	D _{max} , mm	L _{max} , mm	d, mm	Macca,r Mass, g max				
0.10					6			1.5	0	14		1.5				
0.12									6			1.0				
0.15 0.18					7			1.7				1.8				
0.18						14	0.6		7			2.0				
0.27					8	'-	0.0	1.8			0.6					
0.27									8	16	0.0	2.2				
0.39					9			1.9	9	10		2.5				
0.47					10			2.0	10			3.0				
0.56					8			2.2	11			3.5				
0.68					9			2.5	12							
0.82					10			3.0	8			4.0				
1.0	8			2.2	11	18		3.5	9			4.5				
1.2						-			10	28	0.8	5.0				
1.5	9	16	0.6	2.5	12			5.0								
1.8	10		0.0	3.0	13		0.0	5.5	11			6.0				
2.2	11			3.5	14		0.8	6.5	9			7.0				
3.3	12 8			4.0 3.0	10 11			5.0 6.0	10 11			9.0				
3.9	9			4.0	12			7.0	12			11				
4.7					13	30		8.0								
5.6	10			5.0	14	1		9.0	13	44	1.0	12				
6.8	11	20	0.0	6.0	15			10	15			14				
8.2	12	30	0.8	7.0	16			11	17			18				
10	13			8.0	14			12	19			21				
12	14			9.0	16			15	21			26				
15	16			11	17	44	1.0	18								
18	17			12	19			21								
22 27	14 15			13 14	21			26								
33	17			18												
39	20			22												
47	21	44 1.0	1.0	26												
56	23		44 1.0	30												
68	25		-					50								
82	28					60										
100	30			74												

С _{ном} ,	U,	юм=160 В	s / U _r =160) V	U,	_{юм} =250 В	s / U _r =250	0 V	U,	_{юм} =400 В	s / U _r =40	0 V
мкФ С _{г,} µF	D _{max} , mm	L _{max} , mm	d, mm	Macca,r Mass, g max	D _{max} , mm	L _{max} , mm	d, mm	Macca,r Mass, g max	D _{max} , mm	L _{max} , mm	d, mm	Macca,r Mass, g max
0.022									7			1.5
0.027									-			
0.033									8	4.4	0.0	2.0
0.039		1	1			I	1			14	0.6	
0.047	6			1.5	7			1.5	9			2.2
0.056					0			4.0	10			2.4
0.068	7			1.7	8	14	0.6	1.6	10 8			2.4
0.062		14	0.6		9			1.7	9			2.5
0.10	8			1.8	10			1.8	10			3.0
0.12	9			1.9	8			2.0	11			3.5
0.18	10			2.0	9			2.4	12	18		4.0
0.22	8			2.2	10			2.8	13			4.5
0.27	9					40		3.0	14		0.8	5.0
0.33	9			2.5	11 18		5.0	15		0.6	6.0	
0.39	10	18		3.0	12			5.5	10			4.0
0.47	11	10		3.5	13			6.0	11			5.0
0.56				4.5	14		0.8	6.5	12	30		6.0
0.68	12		0.8	5.0	10			7.0	13	00		7.0
0.82	13			5.5	11			7.5	14			8.0
1.0	10			5.0	12			8.0	15			9.0
1.2	11	00		6.0	13	30		9.0				
1.5	12	30		7.0	14			10 11				
1.8	13 14			8.0 9.0	15 17			12				
2.7	12			9.0	17			12				
3.3	13			12	16			15				
3.9	14			13	17			18				
4.7	15	44	1.0	14	19	1		21				
5.6	17			18	20	44	1.0	24				
6.8	19			21	22	1		28				
8.2	-			1	26			40				
10					28			46				

C _{ном} ,	U _{ном} =630 В / U _r =630 V			0 V	U _{но}	_м =1000 В	/ U _r =10	00 V	U _{Ho}	_м =1600 В	3 / U _r =16	00 V
мкФ С _{r,} µF	D _{max} ,	L _{max} , mm	d, mm	Macca,г Mass, g max	D _{max} , mm	L _{max} , mm	d, mm	Macca,г Mass, g max	D _{max} , mm	L _{max} , mm	d, mm	Macca,r Mass, g max
0.0010				1.0								
0.0012				1.2								
0.0015				1.2								
0.0018				1.3								
0.0022												
0.0027	6			1.4								
0.0033				1.5								
0.0039				1.6								
0.0047		14	0.6	1.7					10			3.0
0.0056			0.0									
0.0068				1.8					11	18		3.5
0.0082				1.0		ı	T		12			4.0
0.010	7			1.9	9			2.5	13			4.5
0.012	•				10			3.0	9		0.8	4.5
0.015	8			2.0	11	18		3.5	9			4.5
0.018					12			4.0	10	30		5.0
0.022	9			2.2	13		0.0	4.5				
0.027	10			2.4	8		0.8	4.0	11			6.0
0.033	8				9			4.5	12			7.0
0.039	_			2.5		30		5 0	10			9.0
0.047	9				10 11			5.0	11 12			10 11
0.056 0.068	10	18		3.0	12			6.0 7.0	13			12
0.082	11	10		3.5	10			9.0	13			
0.10	12			4.0					15	44	1.0	14
0.12	13		0.8	4.5	11			10	16			15
0.15	15		0.0	6.0					18			21
0.18	10			5.0	13	44	1.0	12	19			23
0.22	11			5.5	15			14	21			26
0.27	12	20		6.0	17			18		ı		
0.33	13	30		8.0	18			21				
0.39	14			9.0		•	•					
0.47	16			10								


Зависимость допускаемого напряжения U_t от температуры окружающей среды

Permissible voltage Ut as a function of ambient temperature

Зависимость допускаемой амплитуды переменного синусоидального напряжения или амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_f от частоты f

Permissible amplitude of AC sinusoidal voltage or amplitude of AC sinusoidal component of ripple voltage U_f as a function of frequency f

Ограничения:

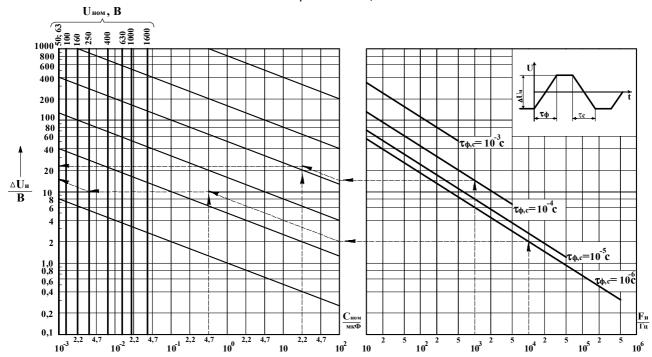
$$U_f \le U_t$$

 $U_f \le 350 \text{ B}$ для $U_{\text{ном}} = 400 \text{ B}$; 630 B
 $U_f \le 750 \text{ B}$ для $U_{\text{ном}} = 1000 \text{ B}$; 1600 B

Пример определения U_f :

1)Дано:
$$f = 10^3$$
 Гц, $U_{\text{ном}} = 630$ В, $C_{\text{ном}} = 1$ мкФ Находим: $U_f = 110$ В 2)Дано: $f = 10^4$ Гц, $U_{\text{ном}} = 50$ В, $C_{\text{ном}} = 10$ мкФ Находим: $U_f = 4$ В

Limits:


$$U_f \le U_t$$

 $U_f \le 350 \text{ V for } U_r = 400 \text{ V}; 630 \text{ V}$
 $U_f \le 750 \text{ V for } U_r = 1000 \text{ V}; 1600 \text{ V}$

Example of calculation of U_f:

1)Given:
$$f=10^3$$
 Hz , $U_r=630$ V, $C_r=1\mu F$ Finding: $U_f=110$ V 2)Given: $f=10^4$ Hz , $U_r=50$ V, $C_r=10\mu F$ Finding: $U_f=4$ V

Зависимость допускаемого размаха импульсного напряжения ΔU_u от частоты следования импульсов F_u , длительности наименьшего из временных участков, соответствующих фронту τ_{φ} или спаду τ_c импульса, и номинальной емкости $C_{\text{ном}}$

Permissible peak-to-peak pulse voltage ΔU_u as a function of pulse repetition frequency F_u , minimal temporal sector τ_u , corresponding pulse leading edge slope τ_ϕ or pulse trailing edge slope τ_c and rated capacitance C_r

Ограничения:

 $\Delta U_{\text{u}} \leq U_{\text{t,p}}$

Пример определения $\Delta U_{\text{\tiny M}}$:

1)Дано:

$$F_{\text{и}} = 10^4 \; \Gamma$$
ц, $\tau_{\Phi,c} = 10^{-6} \; c$, $U_{\text{ном}} = 250 \; B$, $C_{\text{ном}} = 0,47 \; \text{мк} \Phi$

Находим:

 $\Delta U_{\text{\tiny M}}$ = 13 B

2)Дано:

$$F_{\text{и}} = 10^3 \, \Gamma$$
ц, $\tau_{\Phi,c} = 10^{-4} \, \text{c}$, $U_{\text{ном}} = 50 \, \text{B}$, $C_{\text{ном}} = 22 \, \text{мк}$ Ф

Находим:

 $\Delta U_{\text{\tiny M}}$ = 21 B

Limits:

 $\Delta U_{\text{u}} \leq U_{t,p}$

Example of calculation of $\Delta U_{\text{\tiny M}}$:

1)Given:

$$F_{\nu}$$
 = 10^4 Hz , $\tau_{\varphi,c}$ = $10^{\text{-}6}$ s, U_r = 250 V, C_r = 0,47 μF

Finding:

 $\Delta U_{\text{M}} = 13 \text{ V}$

2)Given:

$$F_{\text{\tiny M}} = 10^3 \; \text{Hz}$$
 , $\tau_{\varphi,c} = 10^{\text{\tiny -4}} \; \text{s}, \; U_{\text{\tiny f}} = 50 \; \text{V},$ $C_{\text{\tiny f}} = 22 \; \mu \text{F}$

Finding:

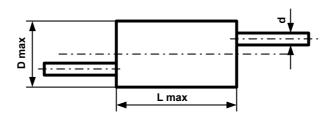
 $\Delta U_{\text{\tiny M}} = 21 \text{ V}$

Предельно допускаемые амплитуда импульсного тока $I_{\rm m}$ и скорость изменения напряжения dU/dt Maximum permissible amplitude of pulse current $I_{\rm m}$ and rate of the voltage change dU/dt

U _{ном} , В U _r , V	С _{ном} , мкФ С _r , µF	I_{m} , max, $ extstyle{A}^{^\star}$	dU/dt, max, V/мs
	12,7	410,8	4
50	3,318	4,9527	1,5
	22100	22100	1
	0,10,47	1,57,0	15
63	0,562,2	5,018,8	9
05	2,78,2	6,720,5	2,5
	1022	1533	1,5
	0,10,56	1,57	15
100	0,681,8	510,5	7
	2,212	736	3
	0,0470,18	1,24,5	25
160	0,220,82	3,312,3	15
100	1,02,2	8,017,6	8
	2,76,8	16,241	6
	0,0470,12	1,43,6	30
250	0,150,56	3,011,2	20
230	0,682,2	6,822	10
	2,710,0	13,550	5
	0,0220,068	0,92,7	40
400	0,0820,33	2,08,2	25
	0,391,0	5,113	13
	0,0010,027	0,051,5	55
630	0,0330,15	1,15,3	35
	0,180,47	3,69,4	20
1000	0,010,068	0,21,6	24
1000	0,0820,33	1,55,0	15
1600	0,00470,033	0,21,1	35
1000	0,0390,22	1,04,4	20

^{* -} Допускаемая амплитуда импульсного тока определяется как произведение скорости изменения напряжения на номинальную емкость.

Технические условия: ОЖО.461.102 ТУ


Предназначены для работы в цепях постоянного, переменного и пульсирующего токов.

Конструкция: обернуты липкой лентой, залиты по торцам эпоксидным компаундом.

Specifications: ОЖО.461.102 ТУ

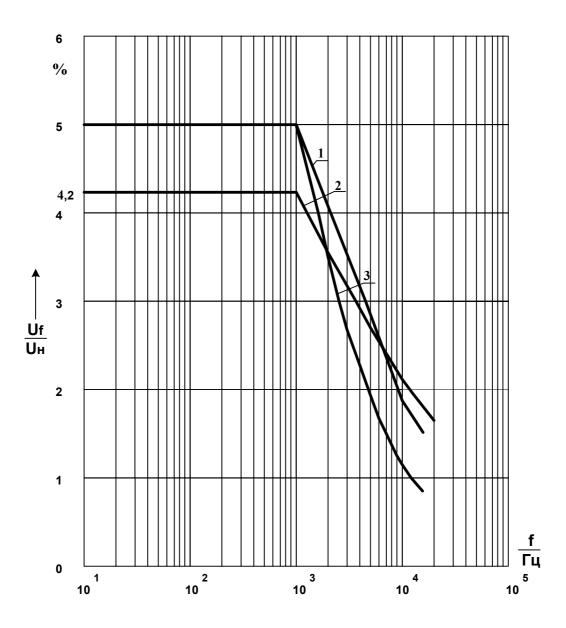
Designed to operate in DC, AC and ripple current circuits.

Design: wrapped with adhesive tape; capacitor ends sealed with epoxy compound.

Номинальная емкость	2200 пФ	Rated capacitance	2200 pF
Номинальное напряжение	10; 12,5; 20 кВ	Rated voltage	10; 12,5; 20 kV
Допускаемое отклонение емкости	±10; ±20 %	Capacitance tolerance	±10; ±20 %
Тангенс угла потерь при f = 1кГц	≤0,008	Dissipation factor at f = 1 kHz	≤0,008
Сопротивление изоляции	≥100 000 МОм	Insulation resistance	≥100 000 MOhm
Интервал рабочих температур	-60+70°C	Operating temperature range	-60+70°C
Наработка	10 000 ч	Operating time	10 000 hours
Срок сохраняемости	12 лет	Shelf life	12 years
Климатическое исполнение	УХЛ (93±3% относит. влажности при 40±2°C, 4 суток)	Climatic categories	RH 93±3%, 40±2°C, 4 days

Обозначение при заказе:

Конденсатор K73-13 - 10 кВ - 2200 п Φ - \pm 10%


Ordering example:

Capacitor K73-13 - 10 kV - 2200 pF - ± 10%

С _{ном} , пФ С _г , pF	U _{ном} , кВ U _r , kV	D _{max} , mm	L _{max} , mm	d, mm	Macca, г Mass, g max
2200	10	15	28	0,6	10
2200	12,5	16	29	0,6	10
2200	20	19	58	0,8	25

Зависимость допускаемой амплитуды переменного синусоидального напряжения или амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_f от частоты f.

Permissible amplitude of AC sinusoidal voltage or amplitude of AC sinusoidal component of ripple voltage U_f as function of frequency f.

$$1 - U_{\text{HOM}} = 10 \text{ kB}$$

 $2 - U_{\text{HOM}} = 12,5 \text{ kB}$
 $3 - U_{\text{HOM}} = 20 \text{ kB}$

$$2 - U_{\text{max}} = 12.5 \text{ kHz}$$

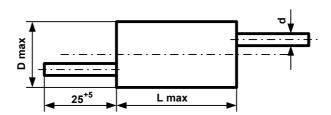
$$3 - U_{HOM} = 20 \text{ kB}$$

$$1 - U_r = 10 \text{ kV}$$

$$2 - U_r = 12,5 \text{ kV}$$

$$3 - U_r = 20 \text{ kV}$$

Технические условия: АДПК.673633.015 ТУ


Предназначены для работы в цепях постоянного, переменного и пульсирующего токов.

Конструкция: обернуты липкой лентой, залиты по торцам эпоксидным компаундом.

Specifications: АДПК.673633.015 ТУ

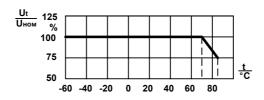
Designed to operate in DC, AC and ripple current circuits.

Design: wrapped with adhesive tape; capacitor ends sealed with epoxy compound.

Номинальная емкость	0,00047 0,1 мкФ	Rated capacitance	0,00047 0,1 μF
Номинальное напряжение (в интервале температур -60°С+70°С)	4; 10; 16; 25 кВ	Rated voltage (temperature range -60°C+70°C)	4; 10; 16; 25 kV
Допускаемое отклонение емкости для Uном = 4 кВ для Uном = 1025 кВ	±5; ±10; ±20 % ±10; ±20 %	Capacitance tolerance Ur = 4 kV Ur = 10 25 kV	±5; ±10; ±20 % ±10; ±20 %
Тангенс угла потерь при f = 1кГц	≤0,008	Dissipation factor at f = 1 kHz	≤0,008
Сопротивление изоляции	≥100 000 МОм	Insulation resistance	≥100 000 MOhm
Интервал рабочих температур	-60+85°C	Operating temperature range	-60+85°C
Наработка	10 000 ч	Operating time	10 000 hours
Срок сохраняемости	12 лет	Shelf life	12 years
Климатическое исполнение	УХЛ (93±3% относит. влажности при 40±2°C, 21 сутки)	Climatic categories	RH 93±3%, 40±2°C, 21 days

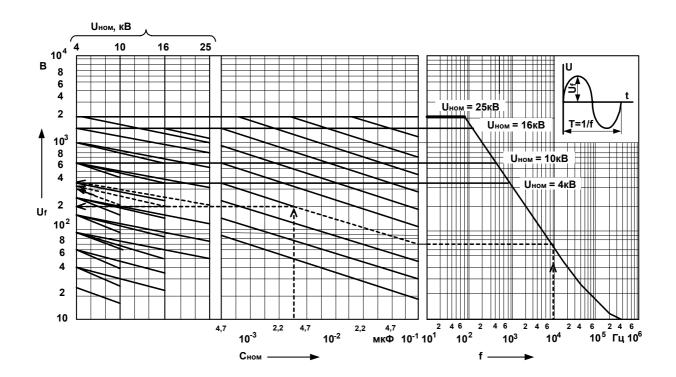
Обозначение при заказе:

Конденсатор K73-14M - 4 кВ - 0,1 мк Φ - \pm 10%


Ordering example:

Capacitor K73-14M $- 4 \text{ kV} - 0.1 \mu\text{F} - \pm 10\%$

U _{ном} , кВ U _r , kV	С _{ном} , мкФ С _г , µF	D _{max} , mm	L _{max} , mm	d, mm	Macca, г Mass, g max	
	0.0033	11			4	
	0.0039				4	
	0.0047	12			5	
	0.0056	13		0.6	6	
	0.0068	14	28		7	
	0.0082	15	1			8
4	0.010	16			9	
	0.012	17			10	
	0.015	19			13	
	0.018	15			15	
	0.022	16			17	
	0.027	17			19	
	0.033	18			21	
	0.039	19	48	0.8	24	
	0.047	21	40	0.0	29	
	0.056	23			35	
	0.068	24			38	
	0.082	26			44	
	0.10	28			50	


U _{ном} , кВ U _r , kV	С _{ном} , мкФ С _г , µF	D _{max} , mm	L _{max} , mm	d, mm	Macca, r Mass, g max
	0.0022	19	28	0.6	13
	0.0033	21	20	0.0	17
	0.0047	17			20
10	0.0068	20	48		27
	0.010	23	70	8.0	35
	0.015	28			50
	0.022	27	68		65
	0.00047	16			9
	0.00068	18	28	0.6	11
	0.0010	20			15
	0.0015	17	48	0.8	20
16	0.0022	20			27
	0.0033	23	40		35
	0.0047	26			44
	0.068	26	68		62
	0.010	29	00		75
	0.00047	16			17
	0.00068	18	48		21
25	0.001	20		8.0	27
25	0.0015	24			40
	0.0022	23	68		50
	0.0033	27			65

Зависимость допускаемого напряжения U_t от температуры окружающей среды Permissible voltage U_t as a function of ambient temperature

Зависимость допускаемой амплитуды переменного синусоидального напряжения или амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_f от частоты f

Permissible amplitude of AC sinusoidal voltage or amplitude of AC sinusoidal component of ripple voltage U_f as a function of frequency f

Ограничения:

 $egin{array}{lll} U_f \leq U_t & & & & & \\ U_f \leq 350 \ B & & & & & & \\ U_f \leq 600 \ B & & & & & & \\ U_f \leq 1400 \ B & & & & & \\ U_f \leq 2100 \ B & & & & & \\ U_{HOM} = 16 \ \kappa B; & & & \\ U_f \leq 2100 \ B & & & & \\ U_{HOM} = 25 \ \kappa B & & \\ \hline \end{array}$

Пример определения U_f:

Дано: $f = 10^4 \Gamma \mu$, $C_{\text{ном}} = 3.3 \cdot 10^{-2} \text{ мкФ}$	находим:
1) U _{HOM} = 4 κB	1) U _f = 200 B
2) U _{HOM} = 10 κB	2) U _f = 290 B
3) U _{HOM} = 16 κB	3) U _f = 316 B
4) U _{HOM} = 25 κB	4) U _f = 355 B

Limits:

 $\begin{array}{l} U_f \leq U_t \\ U_f \leq 350 \; V \quad \text{for } U_r = 4 \; \text{kV}; \\ U_f \leq 600 \; V \quad \text{for } U_r = 10 \; \text{kV}; \\ U_f \leq 1400 \; V \quad \text{for } U_r = 16 \; \text{kV}; \\ U_f \leq 2100 \; V \quad \text{for } U_r = 25 \; \text{kV}; \end{array}$

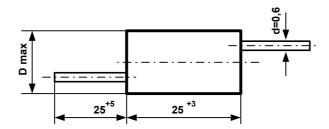
Example of calculation of U_f:

Given:

$f = 10^4 \text{ Hz}$, $C_r = 3.3 \cdot 10^{-2} \mu\text{F}$	
1) U _r = 4 kV	1) U _f = 200 V
2) U _r =10 kV	2) $U_f = 290 \text{ V}$
3) $U_r = 16 \text{ kV}$	3) $U_f = 316 \text{ V}$
4) $U_r = 25kV$	4) $U_f = 355 \text{ V}$

Finding:

Технические условия: АДПК.673633.016 ТУ


Предназначены для работы в цепях постоянного, переменного и пульсирующего токов.

Конструкция: обернуты липкой лентой, залиты по торцам эпоксидным компаундом.

Specifications: АДПК.673633.016 ТУ

Designed to operate in DC, AC and ripple current circuits.

Design: wrapped with adhesive tape; capacitor ends sealed with epoxy compound.

Номинальная емкость	150, 390 пФ	Rated capacitance	150, 390 pF
Номинальное напряжение	16 кВ	Rated voltage	16 kV
Допускаемое отклонение емкости	±20 %	Capacitance tolerance	±20 %
Допускаемая амплитуда напряжения при f ≤ 1 кГц	≤ 500 B	Permissible voltage amplitude at f ≤ 1 kHz	≤ 500 V
Тангенс угла потерь при f = 1кГц	≤0,008	Dissipation factor at f = 1 kHz	≤0,008
Сопротивление изоляции	≥1 000 000 МОм	Insulation resistance	≥1 000 000 MOhm
Интервал рабочих температур	-60+70°C	Operating temperature range	-60+70°C
Наработка	5000 ч	Operating time	5000 hours
Срок сохраняемости	12 лет	Shelf life	12 years
Климатическое исполнение	УХЛ (93±3% относит. влажности при 40±2°C, 21 сутки)	Climatic categories	RH 93±3%, 40±2°C, 21 days

Обозначение при заказе:

Конденсатор K74-7 - 16 кВ - 150 п Φ - \pm 20%

Ordering example:

Capacitor K74-7 - 16 kV - 150 pF - ± 20%

С _{ном} , пФ С _r , pF	D _{max} , mm	Macca, г Mass, g max		
150	10	3.5		
390	13	5.5		

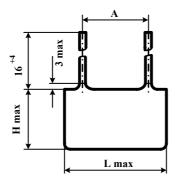
0.01 4.7 uE

Технические условия: АДПК.673633.020 ТУ

АЖЯР.673633.004 ТУ

Предназначены для работы в цепях постоянного, переменного, пульсирующего токов и в импульсных режимах.

Конструкция: окукленные.


Номинальная емкость

Specifications: АДПК.673633.020 ТУ АЖЯР.673633.004 ТУ

Designed to operate in DC, AC and ripple current circuits and in pulse mode.

Design: dipped.

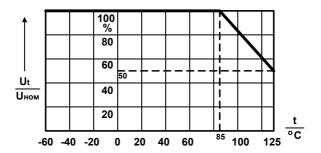
Pated canacitance

0.01

4.7 M/D

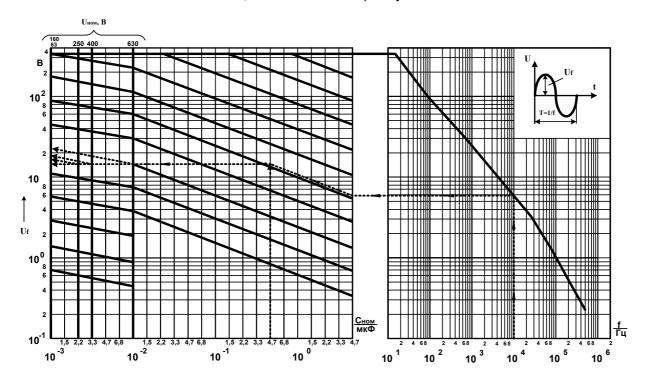
Номинальная емкость	0,01 4,7 мкФ	Rated capacitance	0,01 4,7 μF
Номинальное напряжение (в интервале температур -60°С+85°С)	63; 160; 250; 400; 630 B	Rated voltage (temperature range -60°C+85°C)	63; 160; 250; 400; 630 V
Рабочее напряжение при 125°C	0,5 Uном	Working voltage at 125°C	0,5 Ur
Допускаемое отклонение емкости	±5; ±10; ±20 %	Capacitance tolerance	±5; ±10; ±20 %
Тангенс угла потерь при f = 1кГц	≤0,008	Dissipation factor at f = 1 kHz	≤0,008
Сопротивление изоляции для Сном ≤ 0,33 мкФ Ином = 63 В Ином ≥ 160 В	≥12 000 MOm	Insulation resistance at Cr ≤ 0,33µF Ur = 63 V Ur ≥ 160 V	≥12 000 MOhm
OHOM ≥ 100 B	≥12 000 MOM ≥30 000 MOM	01 ≥ 100 V	≥30 000 MOhm
Постоянная времени для Сном > 0,33 мкФ Uном = 63 В		Time constant at Cr > 0,33 µF Ur = 63 V	
Uном ≥ 160 B	≥4000 МОм·мкФ ≥10 000 МОм·мкФ	Ur ≥ 160 V	≥ 4000 MOhm·µF ≥10 000 MOhm·µF
Интервал рабочих температур	-60+125°C	Operating temperature range	-60+125°C
Изменение емкости в интервале		Capacitance change within	
положительных температур	≤18%	positive temperature range	≤18%
Наработка	15 000 ч	Operating time	15 000 hours
Срок сохраняемости	20 лет	Shelf life	20 years
Климатическое исполнение	УХЛ, В ($93\pm3\%$ относит. влажности при $40\pm2^{\circ}$ С,21 сутки)	Climatic categories	RH 93±3%, 40±2°C, 21 days

Обозначение при заказе:


Конденсатор К73-17 - 250 В - 0,47 мкФ ±10% - В(для всеклиматического исполнения) - №ТУ

Ordering example:

Capacitor K73-17 - 250 V - 0,47 µF ±10% - - №TУ


U _{ном} , В U _r , V	С _{ном} , мкФ С _г , µF	L _{max} , mm	B _{max} , mm	H _{max} , mm	A, mm	d, mm	Macca, г Mass, g max
0.18	0.18		6	10			1.4
	0.22	40	6	10	40	0.6	1.4
	0.33	12	6.3	13	10		2.5
	0.47		8	15			3
62	0.68		6.3	13			3.5
63	1.0	18	8	15	15	0.8	4
	1.5		8.5	19		0.6	5.5
	2.2	23	8.5	19			7
	3.3	23	10.5	21	20		9
	4.7	24	12	25		1.0	12
160	1.5	25	12	25	20	1.0	12
160	2.2	25	15.5	25	20	1.0	14
	0.047		6.3	11		0.6	2
	0.068	12	6	14	10	0.0	2.5
	0.1		8	15			3
	0.15		6	13		0.8	3.5
250	0.22	18	7	14	15		4
	0.33		8.5	16			5
	0.47		8	18			5.5
	0.68	23	9	19	20		7
	1.0		10.5	21			9
	0.022		6	10.5		0.6	1.4
	0.033	12	6	13	10	0.0	1.8
	0.047		7	15			2.5
	0.068		5	13			3
	0.1	18	6	14	15		3.5
400	0.15		8	15		8.0	4
	0.22		7	18			5
	0.33	23	8.5	19			6
	0.47		10	21	20		8
	0.68	24	11	24		1,0	10
	1.0	24	14	27		1,0	12
	0.01		6	10.5		0.6	1.4
	0.015	12	6	13	10	0.0	1.8
	0.022		7	15			2.5
	0.033		6	13			3
	0.047	18	7	14	15		3.5
630	0.068		8	15		0.8	4
	0.1		7	18			5
	0.15	23	8.5	19			6
	0.22		10.5	21	20		8
	0.33	25	11.5	24		1.0	10
	0.47		15.5	25		1.0	12

Зависимость допускаемого напряжения U_t от температуры окружающей среды Permissible voltage U_t as a function of ambient temperature

Зависимость допускаемой амплитуды переменного синусоидального напряжения или допускаемой амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_f от частоты f.

Permissible amplitude of AC sinusoidal voltage or amplitude of AC sinusoidal component of ripple voltage U_f as a function of frequency f.

Пример определения U_f:

Дано:

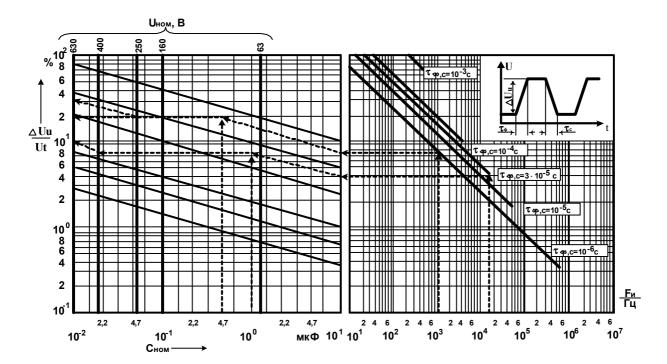
 $f = 10 \text{ кГц; } C_{\text{ном}} = 0,47 \text{ мкФ}.$

Находим:

 U_f =15 В для U_{HoM} =63 В; U_f =17,4 В для U_{HoM} =250 В; U_f =19 В для U_{HoM} =400 В; U_f =23 В для U_{HoM} =630 В.

Example of calculation of U_f:

Given:


f=10kHz; $C_r=0,47 \mu F$.

Finding:

 U_{t} =15 V for U_{r} =63 V; U_{t} =17,4 V for U_{r} =250 V; U_{t} =19 V for U_{r} =400 V; U_{t} =23 V for U_{r} =630 V.

Зависимость допускаемого размаха импульсного напряжения ΔU_u от частоты следования импульсов F_u , длительности наименьшего из временных участков, соответствующих фронту τ_{φ} или спаду τ_c импульса, и номинальной емкости $C_{\text{ном}}$

Permissible peak-to-peak pulse voltage ΔU_u as a function of pulse repetition frequency F_u , minimal temporal sector, corresponding pulse leading edge slope τ_ϕ or pulse trailing edge slope τ_c and rated capacitance C_r

Пример определения ΔU_{u} :

Дано:

$$F_{\text{и}} = 10^3 \, \Gamma$$
ц, $\tau_{\Phi} = \tau_{\text{c}} = 10^{\text{-}6} \, \text{c},$ $C_{\text{ном}} = 0.47 \, \text{мк} \Phi \, U_{\text{ном}} = 250 \, \text{B}, \, U_{\text{ном}} = 630 \, \text{B},$

Находим:

$$\Delta U_{\text{HOM}} = \Delta U_{\text{H}} = 31\% \text{ ot } 250 \text{ B} = 77.5 \text{ B}$$

250 B
$$\Delta U_{M} = 31\% \text{ of } 230 \text{ B} = 77.3 \text{ B}$$
 $\Delta U_{M} = 19\% \text{ of } 630 \text{ B} = 119.7 \text{ B}$

630 B

Дано:
$$\begin{split} F_{\text{и}} &= 1,6 \cdot 10^4 \; \text{Гц}, \; \tau_{\varphi} = \tau_{c} = 3 \cdot 10^{\text{-5}} \; \text{c}, \\ U_{\text{HoM}} &= 400 \; \text{B}, \; C_{\text{HoM}} = 1,0 \; \text{мк} \Phi \end{split}$$

Находим: ΔU_{u} = 10% от 400 B = 40 B

Example of calculation of $\Delta U_{\scriptscriptstyle M}$:

Given:

$$F_{\text{\tiny M}} = 10^3 \; \text{Hz} \; , \; \tau_{\Phi} = \tau_{\text{\tiny C}} = 10^{-6} \; \text{s}, \ U_{\text{\tiny F}} = 250 \; \text{V}, \; U_{\text{\tiny F}} = 630 \; \text{V}, \; C_{\text{\tiny F}} = 0,47 \; \mu \text{F}$$

Finding:

at
$$U_r = 250 \text{ V}$$
 $\Delta U_r = 31\% \text{ of } 250 \text{ V} = 77,5 \text{V}$

at
$$U_r = 630 \text{ V}$$
 $\Delta U_r = 19\% \text{ of } 630 \text{ V} = 119,7 \text{V}$

Given:

$$F_{\text{u}} = 1,6 \cdot 10^4 \text{ Hz}$$
, $\tau_{\text{c}} = \tau_{\text{c}} = 3 \cdot 10^{-5} \text{ c}$,

$$U_r = 400 \text{ V}, C_r = 1.0 \mu\text{F}$$

Finding: $\Delta U_{\text{\tiny M}} = 10\%$ of 400 V=40 V

Предельно допускаемые амплитуда импульсного тока I_m и скорость изменения напряжения dU/dt Maximum permissible amplitude of pulse current I_m and rate of the voltage change dU/dt

U _{ном} , В U _r , V	С _{ном} , мкФ С _г , µF	I_{m} , max, A	dU/dt, max, V/мs
	0,180,47	2,46,1	13
63	0,681,5	5,412,0	8
	2,24,7	8,818,8	4
160	1,52,2	19,528,6	13
	0,0470,1	1,22,5	25
250	0,150,33	2,25,0	15
	0,471,0	6,113,0	13
	0,0220,047	0,81,6	35
400	0,0680,15	1,43,0	20
	0,221,0	3,516,0	16
	0,010,022	0,51,1	50
630	0,0330,068	1,02,0	30
	0,10,47	2,511,7	25

Технические условия: АДПК. 673633.021 ТУ

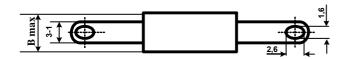
ОЖО.461.147 ТУ

Предназначены для подавления радиопомех в диапазоне частот от 0,1 ... 100 МГц.

Конструкция: обернуты липкой лентой, залиты по торцам эпоксидным компаундом.

Specifications: АДПК. 673633.021 ТУ

ОЖО.461.147 ТУ


0,1 10 µF

Designed for interference suppression at frequency 0,1 ... 100 MHz.

Design: wrapped with adhesive tape; capacitor ends sealed with epoxy compound.

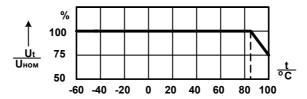
TIOMPHIATIBILATI CHIROCTE	0,1 10 MR4	rtated dapaoitarios	σ, τ το μι
Номинальное напряжение	50_; 160_; 250_/127~; 500_/250~ B	Rated voltage	50_; 160_; 250_/127~; 500_/250~ V
Номинальный ток	4; 6.3; 10 A	Rated current	4; 6.3; 10 A
Допускаемое отклонение емкости	±10; ±20 %	Capacitance tolerance	±10; ±20 %
Тангенс угла потерь при f = 1 кГц	≤0,012	Dissipation factor at f = 1 kHz	≤0,012
Сопротивление изоляции для Сном ≤ 0,33 мкФ	≥30 000 МОм	Insulation resistance at Cr ≤0,33 µF	≥30 000 MOhm
Постоянная времени для Сном > 0,33 мкФ для Uном = 50 В для Uном = 160 500 В	≥4000 МОм·мкФ ≥10 000 МОм·мкФ	Time constant at Cr > 0,33 μF Ur = 50 V Ur = 160 500 V	≥4000 MOhm·µF ≥10 000 MOhm·µF
Интервал рабочих температур	-60+100°C	Operating temperature range	-60+100°C
Наработка	15 000 ч	Operating time	15 000 hours
Срок сохраняемости	20 лет	Shelf life	20 years
Климатическое исполнение	УХЛ (93±3% относит. влажности при 40±2°C, 21 сутки)	Climatic categories	RH 93±3%, 40±2°C, 21 days

0,1 10 мкФ

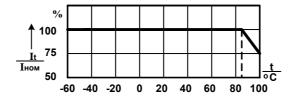
Обозначение при заказе:

Номинальная емкость

Конденсатор К73-21б - 500В₋ / 250В_~ - 10 A - - 1мкФ ±20% - №ТУ

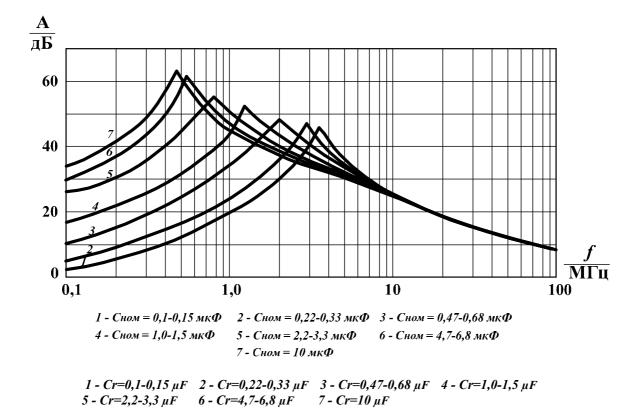

Ordering example:

Rated capacitance


Capacitor K73-216 - 500V _ / 250V $_{\sim}$ - 10 A - - 1 μ F ±20% - N $_{\sim}$ TY

U _{ном} _, В	U _{ном} ~, U _{г~} ,	С _{ном} , мкФ	I _{HOM} , A	Размеры, мм Dimensions, mm			Масса, г
U _{r_} , V	Veff (50Hz)	C _r , µF	I _r , A	L _{max}	B _{max}	H _{max}	Mass, g max
		0.47		15	5	12	3
		0.68	4.0	19	4	13	3
		1.0	4.0	19	5	14	4
		1.5		19	6.7	16	5
50	-	2.2		26	6	18	6
		3.3		26	7.5	20	7
		4.7	6.3	33	6.7	24	9
		6.8		33	7.1	26	11
		10	1	33	10	28	15
		0.33		19	5	14	4
		0.47	4.0	19	6	16	5
160		0.68		19	7.1	18	6
160	-	1.0	6.3	26	7.1	19	7
		1.5		26	8	22	9
		2.2		33	8.5	22	11
		0.10		15	5	12	3
		0.15	4.0	15	6	14	3
		0.22	4.0	19	5	14	4
		0.33]	19	6	15	5
250	127	0.47		26	6.1	15	6
		0.68	6.3	26	6.7	17	7
		1.0		33	6.7	18	8
		1.5		33	8	21	9
		2.2	1	33	10	24	12
		0.10		28	5.5	17	5
		0.15	6.3	28	6.7	19	7
		0.22	0.3	28	7.5	20	8
		0.33		28	8.5	22	9
500	250	0.47		39	7.1	25	11
		0.68]	39	8.5	28	15
		1.0	10	45	9.5	30	25
		1.5		45	13	34	32
		2.2		45	16.5	36	40

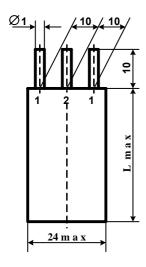
Зависимость допускаемого напряжения U_t от температуры окружающей среды Permissible voltage U_t as a function of ambient temperature



Зависимость допускаемого тока I_t от температуры окружающей среды Permissible current I_t as a function of ambient temperature

Зависимость вносимого затухания A от частоты f для конденсаторов варианта "б" (измерение по несимметричной схеме с номинальным входным сопротивлением 50 Ом)

Insertion loss A as a function of frequency f for the capacitors with index "6" (measured by the use of asymmetric circuit with rated input resistance 50 Ohm)



Зависимость допускаемой амплитуды переменного синусоидального напряжения или допускаемой амплитуды переменной синусоидальной составляющей пульсирующего напряжения от частоты f Permissible amplitude of AC sinusoidal voltage or working amplitude of AC sinusoidal component of ripple voltage as a function of frequency f

Технические условия: АДПК. 673633.021 ТУ

Предназначены для подавления радиопомех в диапазоне частот от 0,1 ... 100 МГц.

Конструкция: обернуты липкой лентой, залиты по торцам эпоксидным компаундом.

Specifications: АДПК. 673633.021 ТУ

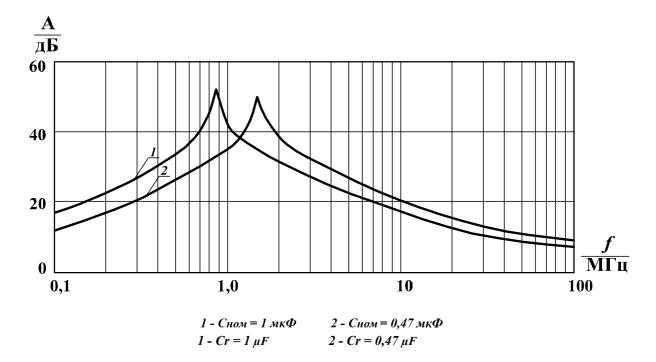
Designed for interference suppression at frequency 0,1 ... 100 MHz.

Design: wrapped with adhesive tape; capacitor ends sealed with epoxy compound.

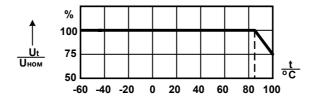
С _{ном} , мкФ С _r , µF	L _{max} , mm	масса, г mass, max		
0.47	26	20		
1.0	43	30		

Номинальная емкость (по требованию возможны другие номинальные емкости)	0,47; 1,0 мкФ	Rated capacitance (other rated capacitance are also available)	0,47; 1,0 μF
Номинальное напряжение постоянного тока (в интервале температур -60 °C +85 °C)	500 B	Rated voltage (temperature range -60°C +85°C)	500 V
Переменное напряжение (в интервале температур -60°С +85°С)	250 Вэфф	Alternating voltage (temperature range -60°C +85°C)	250 Veff
Номинальный ток	4 A	Rated current	4 A
Допускаемое отклонение емкости	±20 %	Capacitance tolerance	±20 %
Тангенс угла потерь при f = 1кГц	≤0,012	Dissipation factor at f = 1 kHz	≤0,012
Постоянная времени	≥10 000 МОм.мкФ	Time constant	≥10 000 MOhm. µF
Интервал рабочих температур	-60+100°C	Operating temperature range	-60+100°C
Наработка	15 000 ч	Operating time	15 000 hours
Срок сохраняемости	20 лет	Shelf life	20 years
Климатическое исполнение	УХЛ (93±3% относит. влажности при 40±2°C, 21 сутки)	Climatic categories	RH 93±3%, 40±2°C, 21 days

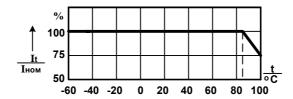
Обозначение при заказе:


Конденсатор К73-21г - 500В₋ / 250В_~ - 4 A - 1мкФ ±20% - №ТУ

Ordering example:


Capacitor K73-21r - $500V_{-}/250V_{\sim}$ - 4 A - $1\mu F$ $\pm 20\%$ - $N\Phi TY$

Зависимость вносимого затухания от частоты f для конденсаторов варианта "г" (измерение по несимметричной схеме с номинальным входным сопротивлением 50 Ом).


Insertion loss A as a function of frequency f for the capacitors with index "a" (measured by the use of asymmetric circuit with rated input resistance 50 Ohm)

Зависимость допускаемого напряжения U_t от температуры окружающей среды Permissible voltage U_t as a function of ambient temperature

Зависимость допускаемого тока $I_{\rm t}$ от температуры окружающей среды Permissible current $I_{\rm t}$ as a function of ambient temperature

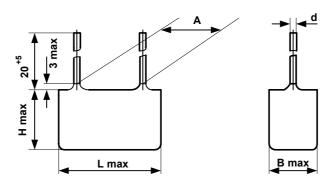
Зависимость допускаемого напряжения от частоты аналогична приведенной на стр.№33 (*K73-216*)

Permissible voltage as a function of frequency – *K73-216* (page №33)

Технические условия: АДПК.673633.010 ТУ

Предназначены для работы в цепях постоянного, переменного, пульсирующего токов и в импульсных режимах.

Могут применяться взамен К73-17, К73-30, К73-34, К73-5.


Конструкция: окукленные.

Specifications: АДПК.673633.010 ТУ

Designed to operate in DC, AC and ripple current circuits and in pulse mode.

Can be used instead of K73-17, K73-30, K73-34, K73-5.

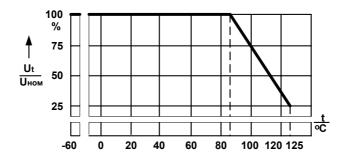
Design: dipped.

Номинальная емкость	0,001 6,8 мкФ	Rated capacitance	0,001 6,8 μF
Номинальное напряжение (в интервале температур -60°С+85°С)	63; 100; 160; 250; 400; 630 B	Rated voltage (temperature range -60°C+85°C)	63; 100; 160; 250; 400; 630 V
Допускаемое отклонение емкости	±5; ±10; ±20 %	Capacitance tolerance	±5; ±10; ±20 %
Тангенс угла потерь при f = 1кГц	≤0,012	Dissipation factor at f = 1 kHz	≤0,012
Сопротивление изоляции для Сном ≤ 0,33 мкФ	≥3000 МОм	Insulation resistance at Cr ≤ 0,33 μF	≥ 3000 MOhm
Постоянная времени для Сном >0,33мкФ	≥1000 МОм∙мкФ	Time constant at Cr >0,33 μF	≥ 1000 MOhm·µF
Интервал рабочих температур	-60+125°C	Operating temperature range	-60+125°C
Изменение емкости в интервале положительных температур	≤10%	Capacitance change within positive temperature range	≤10%
Наработка	15 000 ч	Operating time	15 000 hours
Срок сохраняемости	10 лет	Shelf life	10 years
Климатическое исполнение	УХЛ (93±3% относит. влажности при 40±2°C, 10 суток)	Climatic categories	RH 93±3%, 40±2°C, 10 days

Обозначение при заказе:

Конденсатор K73-24в - 100 В - 0,1 мк Φ - \pm 20% - 7,5 мм (А – расстояние между выводами)

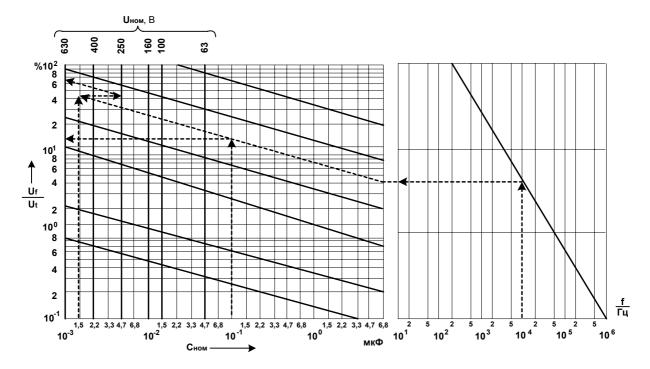
Ordering example:


Capacitor K73-24B - 100 V - 0,1 μ F - \pm 20% - 7,5 mm (A – lead spacing)

C _{ном} ,		U _{но}	_м =100 В /	U _r =100 '	V		U _{ном} =250 В / U _r =250 V					
мкФ С _г , µF	L _{max} , mm	H _{max} , mm	B _{max} , mm	A, mm	d, mm	Macca,г Mass, g max	L _{max} , mm	H _{max} ,	B _{max} ,	A, mm	d, mm	Macca ,r Mass, g max
0.0010 0.0015 0.0022 0.0033 0.0047		9						9				
0.0068 0.0082 0.010 0.012 0.015 0.018 0.022	11		4.5	7.5		2.0	11	10.5	4.5	7.5	0.6	2.0
0.027 0.033 0.039 0.047 0.056		10.5							6			
0.068 0.082 0.10 0.12		10.5			0.6		13	11.5	7.5	10		3
0.15 0.15 0.18 0.22 0.22	13		4.8	10		3.0	18 13.5 18	13 11.5 14	6 9.3 11 7	15 10	0.8 0.6 0.8	3.5 3.1 3.4 4.0
0.27 0.33 0.39 0.47	13.5	44.5	6.0			3.2	19.5	16	6.1 7.1 8.2 9.4	15	0.6	3.7 4.3 4.3 4.8
0.47 0.56 0.68 0.68		11.5	5.6 6.7			3.7	23 19.5 23	18 19	7.5 9.4 11.2 9.0	20 15 20	0.8	5.5 5.2 5.6 7.0
0.82 1.0 1.0	19.5	15.5	5.6 6.7	15		4.2	27	21	8.8	22.5	0.8	6.3 6.9 9.0
1.2 1.5 1.8		15.5 7.8 8.5 6.0			4.7 5.0						0.0	
2.2 2.7 3.3	27	20	6.7 7.2 8.5	22.5	0.9	5.8 6.6 6.8						
3.9 4.7 5.6	33	23	8.0 8.5 10	27.5	0.8	8.3						
6.8			11			12						

С _{ном} ,	U _{ном} =63 В / U _r =63 V					U _{ном} =160 В / U _r =160 V						
мкФ С _r , µF	L _{max} , mm	H _{max} , mm	B _{max} , mm	A, mm	d, mm	Macca,г Mass, g max	L _{max} , mm	H _{max} , mm	B _{max} , mm	A, mm	d, mm	Macca,r Mass,g max
1.0							18	15	8	15		4.5
1.5	18	19	8.5	15		5.5	24	19	9	20	1.0	5.8
2.2	23	19	0.5		0.8	7.0	24	22	10	20		6.8
3.3	23	21	10.5	20		9.0						
4.7	24	25	12		1.0	12						

C _{HOM} ,	U _{ном} =400 В / U _r =400 V						U _H	_м =630 В	/ U _r =630	٧																															
мкФ С _г , µF	Lmax, mm	Hmax, mm	Bmax, mm	A, mm	d, mm	Macca,г Mass, g max	Lmax, mm	Hmax, mm	Bmax, mm	A, mm	d, mm	Macca,r Mass,g max																													
0.010								10.5	6		0.6	2.0																													
0.015							13	13	0	10	0.0	3.0																													
0.022		10.5	6		0.6	2.0		15	7			3.4																													
0.033	13	13	O	10	0.0	3.0		13	6			3.6																													
0.047		15	7			3.4	18	14	7	15		4.0																													
0.068		13	5	15	15	15	15		3.6		15	8		8.0	4.7																										
0.10	18	14	6					5 0.8	0.8	0.8	4.0		18	7			5.8																								
0.15		15	8		0.8	0.8	0.8				8.0	8.0	8.0	8.0	8.0	8.0	8.0	0.8	0.8	0.8	8.0	8.0	8.0	0.8	0.8	8.0	0.8	0.8	8.0	8.0	0.8	0.8	8.0	0.8	0.8	0.8	0.8	4.7	23	19	8.5
0.22		18	7			5.8		21	10.5	20		6.8																													
0.33	23	19	8.5			6.0	25	24	11.5		1.0	8.3																													
0.47		21	10	20		6.8	20	25	15.5		1.0	12.0																													
0.68	24	24	11		1.0	8.3																																			
1.0	24	27	14		1.0	12.0																																			


Зависимость допускаемого напряжения U_t от температуры окружающей среды

Permissible voltage U_t as a function of ambient temperature

Зависимость допускаемой амплитуды переменного синусоидального напряжения или амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_f от частоты f

Permissible amplitude of AC sinusoidal voltage or amplitude of AC sinusoidal component of ripple voltage U_f as a function of frequency f

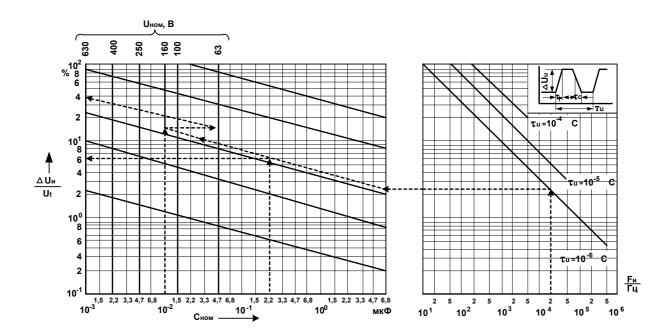
Пример определения U_f :

Дано: $f=1\cdot 10^4$ Гц, $U_t=U_{\text{ном}}=630$ В, $C_{\text{ном}}=0,1$ мкФ Находим: $U_f=13\%$ от $U_{\text{ном}}=82$ В

Дано: $f = 1 \cdot 10^4$ Гц, $U_t = U_{\text{ном}} = 250$ В, $C_{\text{ном}} = 1500$ пФ

Находим: $U_f = 64,5\%$ от $U_{HOM} = 161$ В

Example of calculation of U_f:


Given: f =1 $\cdot 10^4$ Hz , U_t=U_r=630 V, C_r=0,1 μF Finding: U_f =13% of U_r=82 V

Given: $f = 1.10^4 \text{ Hz}$, $U_t = U_r = 250 \text{ V}$, $C_r = 1500 \text{ pF}$

Finding: $U_f = 64,5\%$ of $U_r = 161 \text{ V}$

Зависимость допускаемого размаха импульсного напряжения ΔU_u от частоты следования импульсов F_u , длительности наименьшего из временных участков τ_u , соответствующих фронту τ_{Φ} или спаду τ_c импульса, и номинальной емкости $C_{\text{ном}}$

Permissible peak-to-peak pulse voltage ΔU_u as a function of pulse repetition frequency F_u , minimal temporal sector τ_u , corresponding pulse leading edge slope τ_{c} or pulse trailing edge slope τ_{c} and rated capacitance C_r

Пример определения $\Delta U_{\scriptscriptstyle \text{II}}$:

Дано:

$$F_{\text{N}}=2\cdot10^4$$
 Гц, $\tau_{\text{N}}=10^{-6}$ с,

$$U_t$$
= $U_{\text{ном}}$ =630 В, $C_{\text{ном}}$ =0,22 мкФ

Находим:

$$\Delta U_{\scriptscriptstyle M}$$
=6% ot $U_{\scriptscriptstyle HOM}$ =37,8 B

Дано:

$$F_{\mu}=2\cdot10^4$$
 Гц, $\tau_{\mu}=10^{-6}$ с,

$$U_t = U_{HOM} = 63 \text{ B}, C_{HOM} = 0.01 \text{ мкФ}$$

Находим:

$$\Delta U_{\scriptscriptstyle \sf H}$$
=40% ot $U_{\scriptscriptstyle \sf HOM}$ =25,2 B

Example of calculation of $\Delta U_{\mbox{\tiny M}}$:

Given:

$$F_{\mu}=2.10^4 \text{ Hz}$$
, $\tau_{\mu}=10^{-6} \text{ s}$,

$$U_t=U_r=630 \text{ V}, C_r=0,22 \mu\text{F}$$

Finding:

$$\Delta U_{\mbox{\tiny M}} {=} 6\%$$
 of $U_r {=} 37,8~V$

Given:

$$F_{\mu}=2.10^4 \text{ Hz}$$
, $\tau_{\mu}=10^{-6} \text{ s}$,

$$U_t$$
= U_r =63 V, C_r =0,01 μF

Finding:

$$\Delta U_{\text{N}}$$
=40% of U_r=25,2 V

Предельно допускаемые амплитуда импульсного тока I_m и скорость изменения напряжения dU/dt

Maximum permissible amplitude of pulse current I_m and rate of the voltage change dU/dt

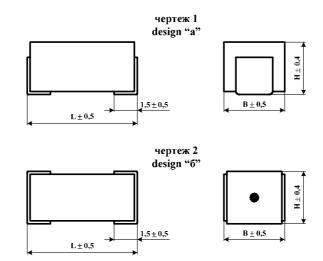
U _{ном} , В U _r , V	С _{ном} , мкФ С _г , µF	I _m , max, A	dU/dt, max, V/μs	
63	1,54,7	16,551,7	11	
	0,0010,0068	0,140,95	140	
	0,00820,027	0,712,35	87	
100	0,0330,1	1,554,7	47	
100	0,120,47	3,3613,1	28	
	0,561,5	8,422,5	15	
	1,86,8	14,454,4	8	
160	1,02,2	16,035,2	16	
	0,0010,0068	0,140,95	140	
	0,00820,047	0,714,1	87	
	0,0560,15	3,08,2	55	
	0,15(L=18 mm)	4,5	30	
	0,180,22	9,912,1	55	
250	0,22(L=18 mm)	5,9	27	
	0,270,47	8,615	32	
	0,47(L=23 mm)	7,5	16	
	0,560,68	17,921,7	32	
	0,68(L=23 mm)	14,9	22	
	0,821,0	13,917,0	17	
	0,0220,047	7,315,5	330	
400	0,0680,15	6,013,6	91	
	0,221,0	13,662,0	62	
	0,010,022	5,011,0	500	
630	0,0330,068	4,69,6	142	
	0,10,47	9,042,3	90	

КОНДЕНСАТОРЫ МЕТАЛЛОПЛЕНОЧНЫЕ

ПОЛИЭТИЛЕНТЕРЕФТАЛАТНЫЕ ДЛЯ ПОВЕРХНОСТНОГО МОНТАЖА METALLIZED POLYESTER FILM CAPACITORS FOR SURFACE MOUNTING

Технические условия: АДПК.673633.012 ТУ

АЖЯР.673633.001 ТУ


Предназначены для работы в цепях постоянного, переменного, пульсирующего токов и в импульсных режимах.

Конструкция: опрессованные - (черт. 1) и незащищенные - (черт. 2).

Specifications: АДПК.673633.012 ТУ АЖЯР.673633.001 ТУ

Designed to operate in DC, AC and ripple current circuits and in pulse mode.

Design: moulded - design 1 and unprotected design 2.

Номинальная емкость	0,001 0,22 мкФ	Rated capacitance	0,001 0,22 μF
Номинальное напряжение (в интервале температур -60°С+85°С)	63; 100; 250; 400; 630 B	Rated voltage (temperature range -60°C+85°C)	63; 100; 250; 400; 630 V
Допускаемое отклонение емкости	±5; ±10; ±20 %	Capacitance tolerance	±5; ±10; ±20 %
Тангенс угла потерь при f = 1кГц	≤0,012	Dissipation factor at f = 1 kHz	≤0,012
Сопротивление изоляции	≥3000 МОм	Insulation resistance	≥3000 MOhm
Интервал рабочих температур	-60+100°C	Operating temperature range	-60+100°C
Изменение емкости в интервале положительных температур	≤10%	Capacitance change within positive temperature range	≤10%
Наработка	15 000 ч	Operating time	15 000 hours
Срок сохраняемости	20 лет	Shelf life	20 years
Климатическое исполнение для опрессованных конденсаторов (чертеж 1)	УХЛ (93±3% относит. влажности при 40±2°C, 21 сутки)	Climatic categories for design "a"	RH 93±3%, 40±2°C, 21 days
для незащищенных конденсаторов (чертеж 2)	80% относит. влаж- ности при 25°C	for design "6"	RH 80%, 25°C

Обозначение при заказе:

Конденсатор К73-31 - 400В - 0,01мкФ ±10% -№ТУ

Конденсатор К73-31(черт.2) - 250В - 0,15мкФ ±5%

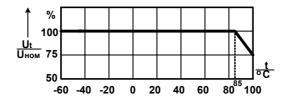
- №ТУ

Ordering example:

Capacitor K73-31 - 400V - 0,01µF ±10% - №TУ Capacitor K73-31(design 2) - 250V - 0,15µF ±5% - №ТУ

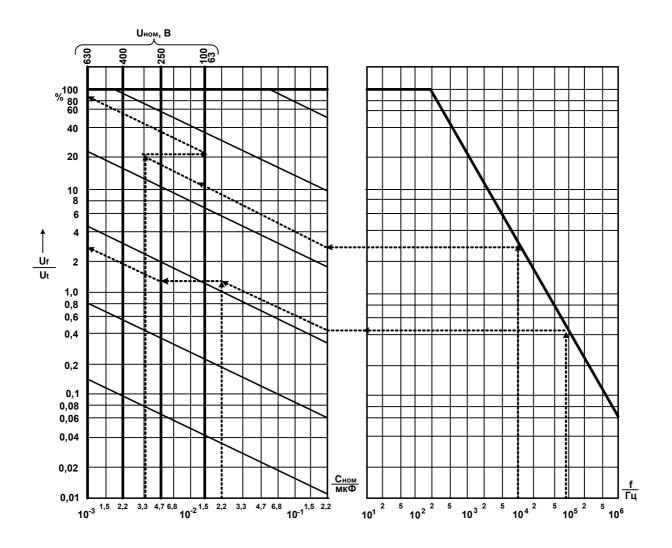
С _{ном} , мкФ	U,	_{юм} =100I U _r =100V	B / /	U,	U _{ном} =250В / U _r =250V			U _r =400V U _r		U _{ном} =630В / U _r =630V		Вариант	
C _r , µF	L, mm	B, mm	H, mm	L, mm	B, mm	H, mm	L, mm	B, mm	H, mm	L, mm	B, mm	H, mm	исполн.
0.001									I			I	
0.0015													
0.0022													
0.0033													
0.0047			4							10		5	
0.0068	7.1	6.3	7						3.2			3	
0.010						•	10		5	12**	8	4	
0.015						3.2		8				5	Черт.1
0.022				10			12**		4	15 ^{**}			
0.033				10	8	5			5		10	6	
0.047			5		Ü		15**	10	6				
0.068			3.2	12**		4		10					
0.10	10	8		15 ^{**}		5							
0.15			5		10	6							
0.22*												ı	
0.01										11		2.5	
0.015											6.5		
0.022							11	6.5	2.5	14		4.0	
0.033									4		8.5	4.5	Черт.2
0.047							14	8.5					'
0.068				11	6.5				4.5				
0.1				14		4							
0.15					8.5								

Черт.2 - конденсаторы незащищенной конструкции


(Пайка паяльными пастами при температуре не более 150°C. Не допускается промывка водой).

Design 2 - unprotected

(Soldering at temperature not more than 150°C by the use of soldering pastes. Washing by water is forbidden).


- * номинальное напряжение 63 В.
- * rated voltage 63 V.
 *- В настоящее время серийно не выпускаются. Поставка возможна после согласования сроков.

Зависимость допускаемого напряжения U_t от температуры окружающей среды Permissible voltage U_t as a function of ambient temperature

Зависимость допускаемой амплитуды переменного синусоидального напряжения или амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_fот частоты f.

Permissible amplitude of AC sinusoidal voltage or amplitude of AC sinusoidal component of ripple voltage U_f as a function of frequency f

Пример определения U_f:

Example of calculation of U_f :

1)Дано:

 $f=10^5$ Гц, $U_t=U_{HOM}=250$ В,

С_{ном} =0,022 мкФ

Находим:

 $U_f = 3\%$ or $U_t = 7.5$ B

2)Дано:

 $f=10^4$ Гц, $U_t=U_{HOM}=100$ В,

С_{ном} =0,0033 мкФ

Находим:

 U_f =80% or U_t =80 B

1)Given:

 $f=10^5 Hz$, $U_t=U_r=250 V$,

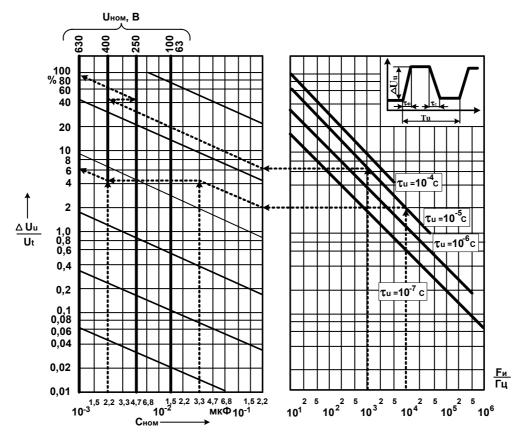
 $C_r = 0.022 \mu F$

Finding:

 U_f = 3% of U_t = 7,5 V

2)Given:

 $f=10^4 Hz$, $U_t=U_r=100 V$,


 $C_r = 0.0033 \mu F$

Finding:

 $U_f = 80\% \text{ of } U_t = 80 \text{ V}$

Зависимость допускаемого размаха импульсного напряжения $\Delta U_{\text{и}}$ от частоты следования импульсов $F_{\text{и}}$, длительности наименьшего из временных участков, соответствующих фронту τ_{ϕ} или спаду τ_{c} импульса, и номинальной емкости $C_{\text{ном}}$

Permissible peak-to-peak pulse voltage ΔU_u as a function of pulse repetition frequency F_u , minimal temporal sector, corresponding pulse leading edge slope τ_{ϕ} or pulse trailing edge slope τ_c and rated capacitance C_r

Пример определения ΔU_{u} :

1) Дано: $F_{\text{и}} = 10^4 \; \Gamma_{\text{Ц}}, \; \tau_{\Phi} = 10^{-5} \; \text{c}, \; U_t = U_{\text{ном}} = 400 \; \text{B}, \\ C_{\text{ном}} = 0,033 \; \text{мк} \Phi \\ \text{Находим:} \\ \Delta U_{\text{и}} = 6\% \; \text{от} \; U_t = 24 \; \text{B} \\ 2) \; \text{Дано:} \\ F_{\text{и}} = 10^3 \; \Gamma_{\text{Ц}}, \; \tau_{\Phi} = 10^{-5} \; \text{c}, \; U_t = U_{\text{ном}} = 250 \; \text{B}, \\ C_{\text{ном}} = 0,0022 \; \text{мк} \Phi \\ \text{Находим:} \\ \Delta U_{\text{и}} = 85\% \; \text{от} \; U_t = 212 \; \text{B}$

Example of calculation of $\Delta U_{\mbox{\tiny M}}$:

1)Given:
$$\begin{split} F_{\nu} &= 10^4 \text{ Hz , } \tau_{\varphi} = 10^{-5} \text{ s, } U_t = U_r = 400 \text{ V, } \\ C_r &= 0,033 \text{ } \mu\text{F} \\ \text{Finding: } \\ \Delta U_{\nu} &= 6\% \text{ of } U_t = 24 \text{ V} \\ \text{2)Given: } \\ F_{\nu} &= 10^3 \text{ Hz , } \tau_{\varphi} = 10^{-5} \text{ s, } U_t = U_r = 250 \text{ V, } \\ C_r &= 0,0022 \text{ } \mu\text{F} \\ \text{Finding: } \\ \Delta U_{\nu} &= 85\% \text{ of } U_t = 212 \text{ V} \end{split}$$

Предельно допускаемые амплитуда импульсного тока $I_{\rm m}$ и скорость изменения напряжения dU/dt Maximum permissible amplitude of pulse current $I_{\rm m}$ and rate of the voltage change dU/dt

U _{ном} , В U _r , V	С _{ном} , мкФ С _г , µF	I _m , max, A	dU/dt, max, V/мs
63, 100	0,0010,068	0,021,36	20
03, 100	0,10,22	1,32,86	13
250	0,0150,047	0,150,47	10
250	0,0680,15	0,410,9	6
400	0,00680,022	0,10,33	15
400	0,0330,068	0,230,48	7
630	0,00470,01	0,120,25	25
030	0,0150,033	0,150,33	10

Технические условия: АДПК.673633.018 ТУ

АЖЯР.673633.007 ТУ

Предназначены для подавления радиопомех в диапазоне частот 0,15 ... 100 МГц.

Могут применяться взамен К75-37, К75-41, К75-61.

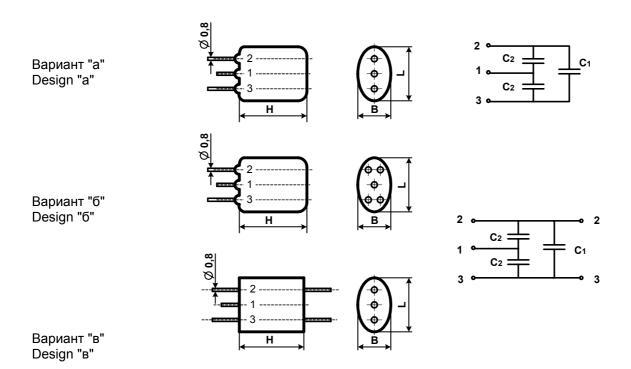
Конденсатор состоит из двух несимметричных емкостей класса Y (C_2) и одной симметричной емкости класса X (C_1).

Конструкция: в изоляционной оболочке.

Вариант "а" - трехвыводные. Вариант "б", "в" - пятивыводные. **Specifications:** АДПК.673633.018 ТУ

АЖЯР.673633.007 ТУ

Designed for man-made EMI suppression in the frequency range 0,15 ... 100 MHz.


Can be used instead of K75-37, K75-41, K75-61.

The capacitor is made up of two asymmetrical sections of class Y (C_2) and one symmetrical section of class X (C_1).

Design: housing made of polymeric material.

Design "a" - with tree terminations.

Design "6", "B" - with five terminations.

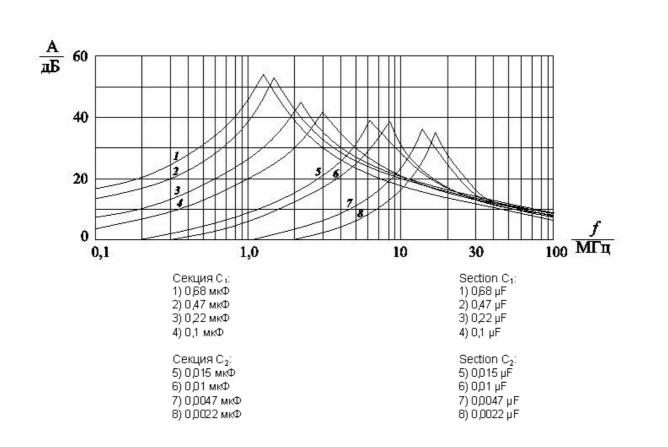
Длина выводов 2 и $3-20^{+5}$ мм, диаметр 0,8 мм Длина вывода $1-16^{+4}$ мм, диаметр 0,6 мм

Length of leads 2 and 3 - 20⁺⁵ mm, diameter 0,8 mm Length of leads 1 - 16⁺⁴ mm, diameter 0,6 mm

Номинальное переменное напряжение при частоте 50 Гц	250 Вэфф	Rated AC voltage at 50 Hz	250 Veff
Конденсаторы выдерживают испытательное напряжение между выводами:	4400 B	Rated test voltage between terminations C ₁ (DC voltage)	1100 V
для емкости C_1 (постоянное) для емкости C_2 (переменное 50Гц)	1100 B 1500 B	C ₂ (AC voltage 50Hz)	1500 V
Номинальный ток (для вариантов "б","в")	10 A	Rated current (design "б","в")	10 A
Допускаемое отклонение емкости	±20 %	Capacitance tolerance	±20 %
Тангенс угла потерь при f = 1кГц	≤0,012	Dissipation factor at f = 1kHz	≤0,012
Сопротивление изоляции для Сном ≤ 0,33мкФ	≥12 000 МОм	Insulation resistance at Cr ≤ 0,33µF	≥12 000 MOhm
Постоянная времени для Сном > 0,33мкФ	≥4000 МОм∙мкФ	Time constant at Cr > 0,33µF	≥4000 MOhm·µF
Интервал рабочих температур	-60+85°C	Operating temperature range	-60+85°C
Наработка	15 000 ч	Operating time	15 000 hours
Срок сохраняемости	20 лет	Shelf life	20 years
Климатическое исполнение	В (93±3% относит. влажности при 40±2°C, 21 сутки)	Climatic categories	RH 93±3%, 40±2°C, 21 days

Обозначение при заказе: Конденсатор К73-43"а" - 250 В - (0,47 мкФ+2 x 0,0047 мкФ) - ±20% - №ТУ

Ordering example: Capacitor K73-43"a" - 250 V - (0,47μF+2 x 0,0047μF) - ±20% - №ΤУ


С _{ном} , С _r ,	мкФ µF *	Размеры, мм	Macca, г Mass, g			
C ₁	C ₂	L	В	Н	max	
0.10	0.0022	33	8	22	9	
0.10	0.0047	33	O	22	9	
0.22	0.0022	33	9	30	10	
0.22	0.0047	33	9	30	10	
0.47	0.0022	33	11	36	16	
0.47	0.0047	33	11	30	10	
	0.0022			36		
0.68	0.0047	22	14	30	20	
0.00	0.010	33	14	20	∠0	
	0.015			38		

^{*} Примечание: возможно сочетание других номинальных емкостей.

^{*} Combination of other values of rated capacitance is possible

Зависимость вносимого затухания А от частоты f (измерение по несимметричной схеме без рабочего тока с номинальным входным сопротивлением 50 Ом)

Insertion loss A as a function of frequency f (measured by the use of asymmetric circuit without operating current; rated input resistance is 50 Ohm)

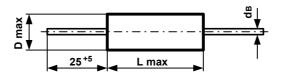
Технические условия: АДПК.673633.014 ТУ

Предназначены для работы в цепях постоянного, переменного, пульсирующего токов и в импульсных режимах.

Могут применяться взамен МБГО, К73 Π -2, К75-24, К73-26

Конструкция: обернуты полимерной лентой, залиты по торцам эпоксидным компаундом.

Выводы: проволочные; возможна другая конструкция выводов.


Specifications: АДПК.673633.014 ТУ

Designed to operate in DC, AC and ripple current circuits and in pulse mode.

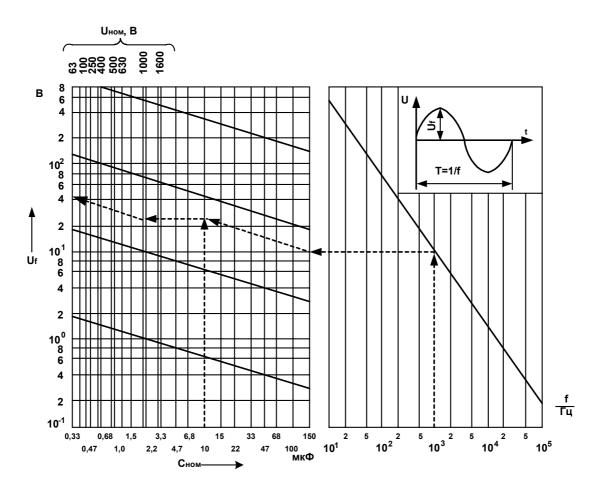
Can be used instead of MB Γ O, K73 Π -2, K75-24, K73-26

Design: wrapped with adhesive tape; capacitor ends sealed with epoxy compound.

Termination: lead wire. Other termination design is possible.

Номинальная емкость	0,33 150 мкФ	Rated capacitance	0,33 150 μF
Номинальное напряжение	63; 100; 250; 400; 500;	Rated voltage	63; 100; 250; 400; 500;
Допускаемое отклонение емкости	630; 1000;1600 B ±5; ±10; ±20 %	Capacitance tolerance	630; 1000; 1600V ±5; ±10; ±20 %
Тангенс угла потерь при f = 1кГц	≤0,012	Dissipation factor at f = 1 kHz	≤0,012
Сопротивление изоляции для Сном ≤ 0,33мкФ	≥6000 МОм	Insulation resistance at Cr ≤ 0,33µF	≥6000 MOhm
Постоянная времени для Сном > 0,33мкФ	≥2000 МОм·мкФ	Time constant at Cr > 0,33µF	≥2000 MOhm·µF
Интервал рабочих температур	-60+85°C	Operating temperature range	-60+85°C
Изменение емкости в интервале положительных температур	≤8%	Capacitance change within positive temperature range	≤8%
Наработка	10 000 ч	Operating time	10 000 hours
Срок сохраняемости	10 лет	Shelf life	10 years
Климатическое исполнение	УХЛ (93 \pm 3% относит. влажности при $40\pm2^{\circ}$ C, 21 сутки)	Climatic categories	RH 93±3%, 40±2°C, 21 days

Обозначение при заказе:


Конденсатор K73-50 - 250 B - 22 мк Φ - \pm 10%

Ordering example:

Capacitor K73-50 $- 250 \text{ V} - 22 \mu\text{F} - \pm 10\%$

U _{ном} , В U _r , V	С _{ном} , мкФ С _{г,} µF	D _{max} , mm	L _{max} , mm	dв, mm	Macca,г Mass, g max	U _{ном} , В U _r , V	С _{ном} , мкФ С _{г,} µF	D _{max} , mm	L _{max} , mm	dв, mm	Macca,г Mass, g max
	33	22			42		15 34			180	
	47	28	60	1.0	74	500	22	42	102	2.0	250
63	68	32			100	300	33	50			340
00	100	30			140		47	60			500
	120	32	85	1.5	140		0.68	15			14
	150	38			200		1.0	18	44	1.0	21
	15	22	44	1.0	28		1.5	22			28
	22	22			42		2.2	22			42
100	33	28	60	1.0	74		3.3	26	60	1.0	60
100	47	34			100	630	4.7	32		1.0	100
	68	32	85	1.5	140		6.8	38			130
	100	38	00	1.0	200		10	34			180
	10	22			42		15	42	102	2.0	250
	15	28	60	1.0	74		22	50] 102	2.0	340
	22	34		1.0	115		33	60			500
250	33	42			175		0.47	18			30
	47	40			200		0.68	22			42
	68	48	85	2.0	270		1.0	26	60	1.0	60
	75	50			290		1.5	30			86
	1.5	15			14		2.2	38			130
	2.2	18	44	1.0	21	1000	3.3	34			180
	3.3	22			28		4.7	40	102		220
	4.7	22			42		6.8	48		2.0	290
	6.8	26	60	1.0	60		10	58			430
400	10	32			100		15 62	62	125		580
	15	38			130		22	75			830
	22	34			180		0.33	22			42
	33	42	102	2.0	250		0.47	26	60	1.0	60
	47	50			340		0.68	32			100
	68	60			500		1.0	38			130
	1.0	15			14	1600	1.5	34			180
	1.5	18	44	1.0	21		2.2	42	102		250
	2.2	22			28		3.3	50		2.0	340
500	3.3	22			42		4.7	58			460
	4.7	26	60	1.0	60	60 6.8 62 125		580			
	6.8	32			100		10	75			830
	10	38			130						

Permissible amplitude of AC sinusoidal voltage U_f as a function of frequency f

Ограничения:

 $U_f \leq U_{\text{\tiny HOM}}$

 $U_f \le 375$ В для $U_{\mbox{\tiny HOM}}$ = 400 В; 500 В; 630 В U_f ≤ 750 В для U_{ном} = 1000 В; 1600 В

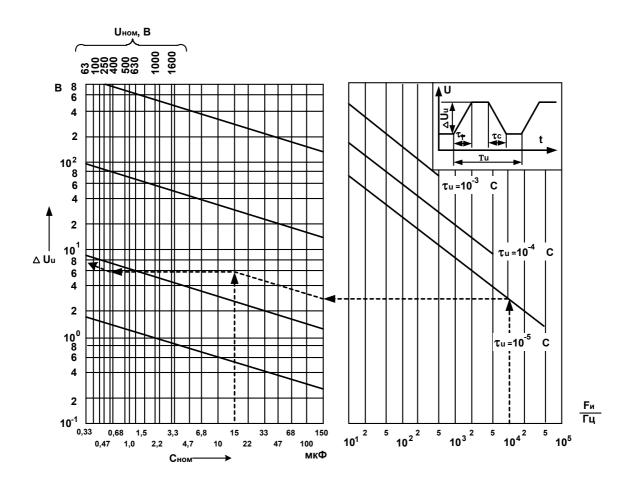
Пример определения U_f Дано: $f = 10^3$ Гц, $U_{\mbox{\tiny HOM}} = 1000$ В

С_{ном} = 10 мкФ Находим: U_f = 40 B Limits:

 $U_f \,\underline{<}\, U_r$

 $U_f \le 375 \text{ V for } U_r = 400 \text{ V}; 500 \text{ V}; 630 \text{ V}$ $U_f \le 750 \text{ V for } U_r = 1000 \text{ V}; 1600 \text{ V}$

Example of calculation of U_f


Given: $f = 10^3 \text{ Hz}$, $U_r = 1000 \text{ V}$,

 $C_r = 10 \mu F$

Finding: U_f = 40 V

Зависимость допускаемого размаха импульсного напряжения ΔU_u от частоты следования импульсов F_u , длительности наименьшего из временных участков τ_u , соответствующих фронту τ_{φ} или спаду τ_c импульса, и номинальной емкости $C_{\text{ном}}$

Permissible peak-to-peak pulse voltage ΔU_u as a function of pulse repetition frequency F_u , minimal temporal sector τ_u , corresponding pulse leading edge slope τ_ϕ or pulse trailing edge slope τ_c and rated capacitance C_r

Ограничения:

 $\Delta U_{\scriptscriptstyle M} \leq U_{\scriptscriptstyle HOM}$

Пример определения ΔU_{u} :

Дано:

$$F_{\mu} = 10^4 \Gamma_{\text{U}}, \ \tau_{\mu} = 10^{-5} \, \text{C}, \ U_{\text{Hom}} = 400 \, \text{B},$$

 $C_{HOM} = 15 \, MK\Phi$

Находим:

 $\Delta U_{\text{M}} = 7 \text{ B}$

Limits: $\Delta U_{N} \leq U_{r}$

Example of calculation of $\Delta U_{\text{\tiny M}}$:

Given:

$$F_{\nu}=10^4$$
 Hz, $\tau_{\nu}=10^{-5}$ s, $U_r=400$ V, $C_r=15~\mu F$

Finding:

 $\Delta U_{\rm M} = 7 \text{ V}$

Предельно допускаемые амплитуда импульсного тока I_m и скорость изменения напряжения dU/dt Maximum permissible amplitude of pulse current I_m and rate of the voltage change dU/dt

U _{ном} , В U _r , V	С _{ном} . мкФ С _г , µF	I _m , max, A	dU/dt, max, V/μs
63	3368	117230	3,4
	100150	255400	2,5
	15	87	5,8
100	2247	96220	4,4
	68100	220330	3,3
250	1033	81260	8,1
200	4775	207370	4,4
	1,53,3	2645	13,6
400	4,715	48165	10,2
	2268	120420	5,5
	1,02,2	1839	18
500	3,310	42141	12,7
	1547	114350	7,5
	0,681,5	1530	20
630	2,26,8	33108	15
	1033	84270	8,2
	0,472,2	27132	57
1000	3,310	102315	31
	1522	360525	24
	0,331,0	2890	85
1600	1,54,7	78219	47
	6,810	237360	35

Технические условия: РАЯЦ. 673633.008 ТУ

АЖЯР.673633.008 ТУ

Предназначены для подавления индустриальных радиопомех в диапазоне частот 0,15 ... 1000 МГц.

Могут применяться взамен К73-28, КБП.

Конструкция: цилиндрическая форма с заливкой торцов эпоксидным компаундом и металлическим крепежным фланцем.

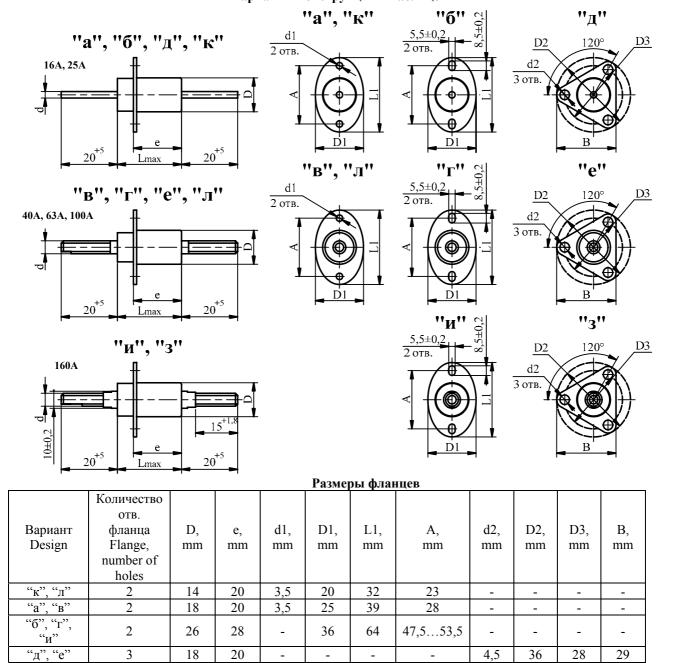
Specifications: PAЯЦ. 673633.008 ТУ

АЖЯР.673633.008 ТУ

Designed for man-made radio interference suppression at frequency 0,15...1000 MHz.

Can be used instead of K73-28, КБП.

4,5


43

35

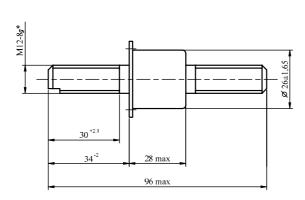
39

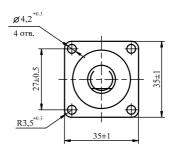
Design: cylindrical housing epoxy resin sealed on the face ends, metallic joining flange is provided.

Варианты конструкции к таблице 1

"<mark>д", "е",</mark>

3

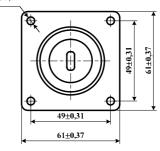

26


28

Вариант "м" / Design "м"

 $50B_{-} - 1$ мк $\Phi - 300A$ Macca ≤ 150 г

 $50V_{-} - 1\mu F - 300A$ Mass $\leq 150g$



Вариант "ж" / Design "ж"

 $100B_{-}/30B_{\sim}$ - 10мк Φ - 500A Macca ≤ 780 г

25±0,26 105±0,435 100V_/30V_~ - 10 μ F - 500A Mass ≤ 780g 4 otb. ϕ 5, $\hat{z}^{0.3}$

Номинальная емкость	$0,0222,2$ мк $\Phi;10$ мк Φ
Номинальное напряжение	50_; 100_/ 30~; 160_/ 50~; 250_/ 127~; 500_/250~; 1000_/380~; 1600_/380~ B
Номинальный ток	16; 25; 40; 63; 100; 160; 300; 500 A
Допускаемое отклонение емкости	±10, ±20 %
Испытательное напряжение	1,5 Uном_

Постоянная времени для Сном >0,33мкФ $\ge 2000 \text{ МОм·мк}$ Ф Интервал рабочих температур $-60...+85^{\circ}$ С Наработка $15\ 000\$ ч Срок сохраняемости $20\$ лет

Климатическое исполнение УХЛ (93 \pm 3% относит. влажности при 40 \pm 2°C, 21 сутки)

Rated capacitance $0,022\dots2,2~\mu\text{F};~10\mu\text{F}$

Rated voltage 50_; 100_/ 30~; 160_/ 50~; 250_/ 127~; 500_/250~; 1000_/380~; 1600_/380~ V

Rated current 16; 25; 40; 63; 100; 160; 300; 500 A $\pm 10, \pm 20 \%$

Rated test voltage 1,5 Ur_

Dissipation factor at f = 1 kHz ≤ 0.012 Insulation resistance

at Cr ≤0,33μF ≥6000 MOhm

Time constant at $Cr > 0.33 \mu F$ $\geq 2000 \text{ MOhm} \cdot \mu F$

Operating temperature range -60...+85°C

Operating time 15 000 hours
Shelf life 20 years

Climatic categories RH 93±3%, 40±2°C, 21 days

Ordering example:

Capacitor K73-56 μ - 500V_/250V $_{\sim}$ - 0,22 μ F ±20% - 25A - (flange with three holes) - №TУ

Обозначение при заказе:

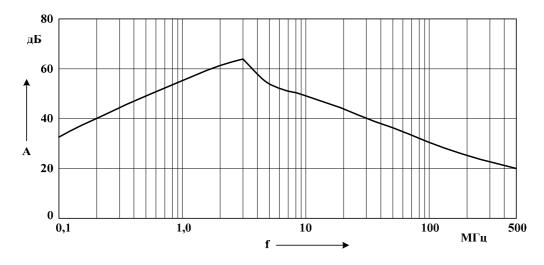
Конденсатор К73-56д - 500В_/250В $_\sim$ - 0,22 мкФ \pm 20% - 25А (фланец с 3-мя отверстиями) - №ТУ

Таблица 1 Вариант/Design "a", "б", "в", "г", "д", "е", "и", "3", "к", "л" Вариант Диаметр конструк- $U_{\scriptscriptstyle \text{HOM-}}$ Номиналь ции (кол. выводов -ный ток / $/U_{\text{hom}\sim}$ C_{hom} , мк Φ Масса, г d, мм D, мм ΔD , MM кре-L_{max}, мм $B/B_{\vartheta\varphi\varphi}$ Rated C_r , μF Mass, g Diameter пежных отcurrent (50 Hz)верстий) / d, mm Design 0.1 к (2) 22 0,22 к (2) 14 28 22 160_/50~ 0,47 к (2) 22 1,0 a, д (2, 3)18 34 35 22 0,1 к (2) 28 250_/127~ 0,22 22 к (2) 16 A $1,5\pm0,1$ 34 26 0,47 к (2) 14 0,022 22 к (2) 28 0,047 22 к (2) 500_/250~ 0,1 34 25 к (2) 0,22 a, д (2, 3)48 42 18 1000_/380_ 0,1 a, д (2, 3)34 35 $\pm 1,35$ 23 0,1 к (2) 28 0,22 23 к (2) 14 160_/50_ 0,47 26 к (2) 34 а, д (2, 3) 18 1.0 36 к (2) 23 0,1 28 250_/127~ 0,22 к (2) 23 0,47 к (2) 34 26 25 A 14 $2\pm0,1$ 23 0,022 к (2) 28 0,047 23 к (2) 500_/250~ 26 34 0,1 к (2) 0,22 48 42 a, д (2, 3)18 0,1 36 a, д (2, 3)1000_/380_ 0,22 б, д (2, 3) 26 $\pm 1,65$ 34 60 1600_/380_ 0,047 a, д (2, 3)18 36 28 0,1 $\pi(2)$ 28 0,22 28 14 $\pm 1,35$ $\pi(2)$ 0,47 30 160_/50~ $\pi(2)$ в, e (2, 3) 1,0 18 34 40 2.2 г, e (2, 3) 26 $\pm 1,65$ 70 0,022 л (2) 28 14 28 0,047 $\pi(2)$ 28 $\pm 1,35$ 0,1 B, e(2, 3)34 40 500_/250~ 18 0,22 B, e(2, 3)60 40 A 48 M-4 0,47 Γ , e (2, 3) 85 26 $\pm 1,65$ 100 1,0 63 Γ , e (2, 3) 0,1 ±1,35 18 40 B, e(2, 3)34 1000_/380~ 70 0,22 Γ , e (2, 3) 26 $\pm 1,65$ 0,47 г, e (2, 3) 63 100 14 0,022 $\pi(2)$ 34 30 $\pm 1,35$ в, e (2, 3) г, e (2, 3) 18 48 60 0,047 1600_/380~ 34 0,1 60 26 $\pm 1,65$ Γ , e(2,3)0,22 100 63 0,22 в, е (2, 3) 45 28 $B, \overline{e}(2,3)$ 0.47 45 18 $\pm 1,35$ 160_/50~ 1,0 в, e (2, 3) 50 34 2,2 Γ , e (2, 3) 26 ±1,65 80 0,022 B, e(2, 3)45 28 0,047 45 B, e(2, 3)18 $\pm 1,35$ 34 50 0,1 в, e (2, 3) 500_/250~ 0,22 в, е (2, 3) 70 63 A 48 M-6 0,47 г, e (2, 3) 100 63 115 1.0 Γ , e (2, 3) 0,1 26 $\pm 1,65$ 28 70 Γ , e (2, 3) 1000_/380~ 0,22 г, e (2, 3) 34 80 г, e (2, 3) в, e (2, 3) 0,47 63 115 0,022 34 50 18 $\pm 1,35$ в, e (2, 3) 1600_/380~ 0,047 70 48 0,1 г, e (2, 3) 26 ±1,65 100

ГИРИКОНД.

Вариант/Design "a", "б", "в", "г", "д", "е", "и", "з", "к", "л"

Продолжение таблицы 1


Номиналь -ный ток / Rated current	$U_{{}_{HOM^-}}$ / $U_{{}_{HOM^-}}$ $B/B_{{}_{3}\varphi\varphi}$ (50 Hz)	$C_{_{ m HOM}}$, мк Φ $C_{_{ m T}}$, μF	Вариант конструк- ции (коли- чество кре- пежных от- верстий) / Design	D, мм	ΔD, мм	L _{max} , mm	Диаметр выводов d, мм Diameter d, mm	Macca, г Mass, g
63 A	1600_/380~	0,22	г, e (2, 3)	26	±1,65	63	M-6	115
		0,47	в, е (2, 3)	18	±1,35	28		60
	160_/50~	1,0	в, е (2, 3)					65
		2,2	г, e (2, 3)	26	±1,65	34		85
	500 /250	0,1	в, е (2, 3)	18	±1,35	48		65
	500_/250_	0,22	в, е (2, 3)				M-8	90
100 4		0,47	г, e (2, 3)			20		110
100 A	1000 /200	0,1	г, e (2, 3)			28		75
	1000_/380~	0,22	г, e (2, 3)			34		85
		0,47	г, e (2, 3)			63		130
		0,022	г, e (2, 3)			28 34		75 85
	1600_/380~	0,047	г, e (2, 3)					
		0,1	г, e (2, 3)			48 63		110 130
		0,22 1,0	г, e (2, 3)			28		100
	160_/50_	2,2	и, з (2, 3) и, з (2, 3)	26	±1,65	34		110
		0,1	и, з (2, 3)			28		100
	500_/250_	0,1	и, з (2, 3)			34		110
	3001230~	0,47	и, з (2, 3)			48		125
160 A		0,1	и, з (2, 3)			28	M-6	100
	1000_/380~	0,22	и, з (2, 3)			48		125
	130033002	0,47	и, з (2, 3)			63		160
		0,047	и, з (2, 3)			34		110
	1600_/380_	0,1	и, з (2, 3)			48		125

Вносимое затухание в диапазоне частот 0,15 ... 1000 МГц для конденсаторов на номинальные токи 16...300А (измерение по несимметричной схеме без рабочего тока с номинальным входным сопротивлением 50 Ом)

Insertion loss A in frequency range 0,15 ... 1000 MHz for range of current 16...300A (measured by the use of asymmetric circuit without operating current; rated input resistance is 50 Ohm)

f, МГц	0,150,5	>0,51000	0,5 5	>5300	>3001000	10 20	>201000
$C_{\text{ном}}$, мк Φ		2,2		0,22; 0,47		0,022; 0,047; 0,1	
А, дБ, тіп	20	30	20	30	20	20	30

Зависимость вносимого затухания А от частоты для конденсаторов на номинальный ток 500А (вариант "ж")

Технические условия: РАЯЦ. 673633.007 ТУ

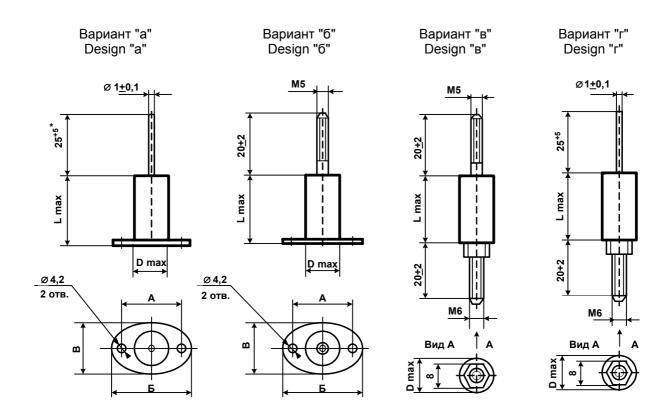
АЖЯР.673633.005 ТУ

Предназначены для подавления индустриальных радиопомех в диапазоне частот 0,15 ... 100 МГц.

Могут применяться взамен К75П-4, К3.

Конструкция: цилиндрическая форма, в изоляционной оболочке с заливкой торцов эпоксидным компаундом.

Крепежный элемент может быть выполнен в виде фланца (варианты "а", "б") или шпильки (вариант "в" и "г"). Вывод резьбовой только для конденсаторов диаметром ≥ 22 мм.


Specifications: РАЯЦ. 673633.007 ТУ АЖЯР.673633.005 ТУ

Designed for man-made radio interference suppression at frequency 0,15...100 MHz.

Can be used instead of K75∏-4, K3.

Design: cylindrical housing made of insulating materials, epoxy resin sealed on the face ends.

Joining member caп be realized as flange (design "a","б") or as joining pin (design "в" и "r"). For capacitors with diameter ≥ 22 mm terminations are threaded.

^{*)}Возможна поставка конденсаторов вар. "а" и "г" со вставкой плавкой на максимальный ток 20 A, при этом длина проволочного вывода 16⁺⁴ мм.

Обозначение при заказе:

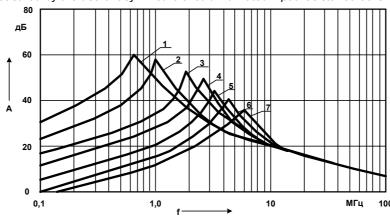
Конденсатор К73-57а - 500В_ / 250В $_{\sim}$ - 2,2мкФ ±20% - ВП *) - №ТУ

*) "ВП" - указывается для конденсаторов со вставкой плавкой

Ordering example:

Capacitor K73-57a - 500V_ / 250V_~ - 2,2μF ±20% - BΠ(with a fuse) - №TУ

^{*)}Delivery of a capacitors of design "a" and "r" provided with a fuse for maximal current 20 A is possible and length wire outlet 16⁺⁴ mm.

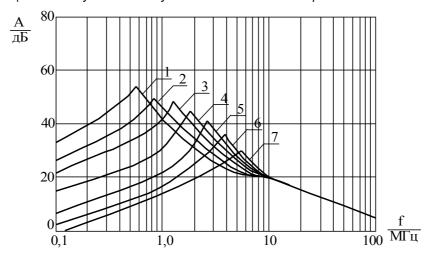

Номинальная емкость	0, 047 4,7 мкФ	Rated capacitance	0, 047 4,7 μF
Номинальное напряжение	250_/ 127~; 500_/250~; 800_/380~; 1000_/500~ B	Rated voltage	250_/ 127~; 500_/250~; 800_/380~; 1000_/500~ V
Допускаемое отклонение емкости	±10; ±20 %	Capacitance tolerance	±10; ±20 %
Испытательное напряжение	1,5 Uном	Rated test voltage	1,5 Ur
Тангенс угла потерь при f = 1кГц	≤0,012	Dissipation factor at f = 1kHz	≤0,012
Сопротивление изоляции для Сном ≤0,33 мкФ	≥5000 МОм	Insulation resistance at Cr ≤0,33µF	≥5000 MOhm
Постоянная времени для Сном > 0,33 мкФ	≥1500 МОм·мкФ	Time constant at Cr >0,33µF	≥1500 MOhm·µF
Интервал рабочих температур	-60+85°C	Operating temperature range	-60+85°C
Наработка	20 000 ч	Operating time	20 000 hours
Срок сохраняемости	25 лет	Shelf life	25 years
Климатическое исполнение	УХЛ (93±3% относит. влажности при 40±2°C, 21 сутки)	Climatic categories	RH 93±3%, 40±2°C, 21 days

$U_{\text{HOM}_} / U_{\text{HOM} \sim}$, B/Bəqq (50 Fu) $U_{\text{r}_} / U_{\text{r} \sim}$, V/Veff (50 Hz)	С _{ном} , мкФ С _г , µF	D _{max} , mm	L _{max} , mm	Б, mm	B, mm	A, mm	Design
250_ / 127 ~	0.47	15	20	35	20	25	а
250_7 127 ~	1.0	18	20	40	22	30	а
	0.22	18	20	40	22	30	а
	0.47	18	25	40	22	30	а
500_ / 250 ~	1.0	26	27	48	32	38	а,б,в,г
	2.2	28	38	50	34	40	а,б,в,г
	4.7	38	38	60	44	50	а,б,в,г
	0.10	18	20	40	22	30	а
800_ / 380 ~	0.22	26	27	48	32	38	а,б,в,г
	0.47	26	32	48	32	38	а,б,в,г
	0.047	20	20	40	22	30	а
1000_ / 500 ~	0.10	20	25	40	22	30	а
	0.22	24	32	44	28	34	а,б,в,г
	0.47	28	38	50	34	40	а,б,в,г
	1.0	38	38	60	44	50	а,б,в,г

Зависимость вносимого затухания A от частоты f для конденсаторов без BП (измерение по несимметричной схеме с номинальным входным сопротивлением 50 Ом)

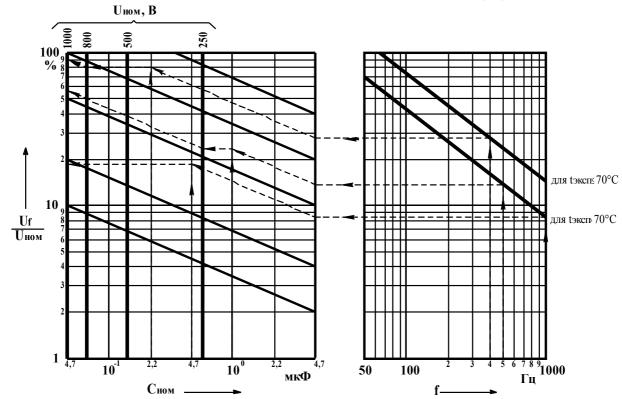
Insertion loss A as a function of frequency f for capacitors without a fuse

(measured by the use of asymmetric circuit with rated input resistance 50 Ohm)



1) 4.7 мкФ 2) 2.2 мкФ 3) 1.0 мкФ 4) 0.47 мкФ 5) 0.22 мкФ 6) 0.1 мкФ 7) 0.047 мкФ 1) 4.7 µF 2) 2.2 µF 3) 1.0 µF 4) 0.47 µF 5) 0.22 µF 6) 0.1 µF 7) 0.047 µF

Зависимость вносимого затухания A от частоты f для конденсаторов со BП (измерение по несимметричной схеме с номинальным входным сопротивлением 50 Ом)


Insertion loss A as a function of frequency f for capacitors with a fuse

(measured by the use of asymmetric circuit with rated input resistance 50 Ohm)

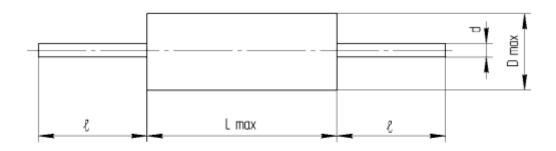
1) 4.7 мкФ 2) 2.2 мкФ 3) 1.0 мкФ 4) 0.47 мкФ 5) 0.22 мкФ 6) 0.1 мкФ 7) 0.047 мкФ 1) 4.7 µF 2) 2.2 µF 3) 1.0 µF 4) 0.47 µF 5) 0.22 µF 6) 0.1 µF 7) 0.047 µF

Зависимость допускаемой амплитуды переменного синусоидального напряжения от частоты f для конденсаторов без плавкой вставки (для конденсаторов со вставкой плавкой амплитуда переменного синусоидального напряжения составляет 77% от значений, определяемых по рисунку)

Ограничения: Uf≤192B (Uэфф≤127B) для Uном=250B; Uf≤350 (Uэфф≤250B) для Uном=500B;

 $Uf \le 535B (Uэфф \le 380B)$ для Uном=800B; $Uf \le 700B (Uэфф \le 500B)$ для Uном=1000B;

Примеры: Дано: 1) $U_{\text{ном}}$ =250B, $C_{\text{ном}}$ =1 мкФ, $t_{\text{эксп}}$ =85°C, f=500 Γ ц; Находим: 1) U_f =56%· $U_{\text{ном}}$ =140B;

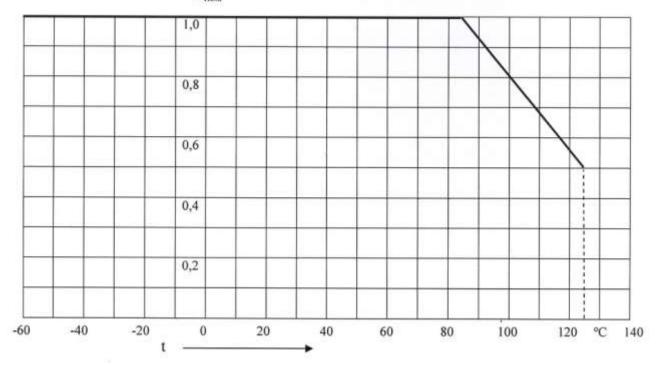

2) $U_{\text{ном}} = 1000 \text{B}, C_{\text{ном}} = 0,47 \text{ мк}\Phi, t_{\text{эксп}} = 85^{\circ}\text{C}, f = 1000 \Gamma \text{ц}; Haxoдим: 2) U_f = 18,8\% \cdot U_{\text{ном}} = 188 \text{B};$

3) $U_{\text{ном}}$ =800B, $C_{\text{ном}}$ =0,22 мкФ, $t_{\text{эксп}}$ =70°C, f=400 Γ ц; Находим: 3) U_{f} =535B(см. ограничения)

Технические условия: АЖЯР.673633.011 ТУ

Предназначены для применения в цепях постоянного, переменного и пульсирующего токов и в импульсном режиме.

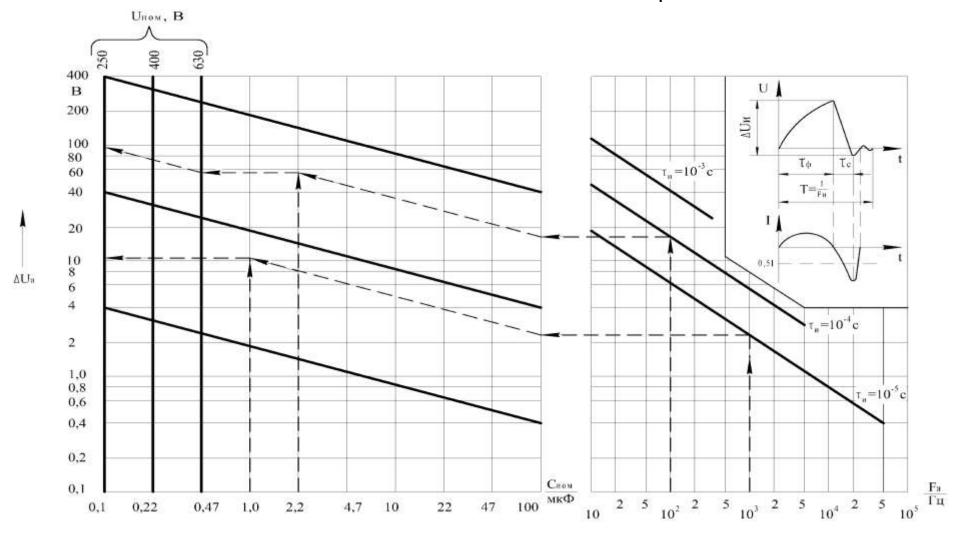
Конструкция: изолированные защищенные, цилиндрические, в электроизоляционной оболочке, залитые по торцам эпоксидным компаундом.


Номинальная емкость, мкФ	1,0100
Номинальное напряжение, В	250; 400; 630
Допускаемые отклонения емкости,%	±5; ±10; ±20
Тангенс угла потерь, tgδ, не более	0,012
Сопротивление изоляции, не менее, МОм (для С _{ном} ≤ 0,33 мкФ)	12 000
Постоянная времени, не менее, МОм·мкФ (для С _{ном} >0,33 мкФ)	4000
Интервал рабочих температур, °C	-60 +125
Увеличение емкости в интервале рабочих температур от 20 до 125°C	≤18%
Уменьшение емкости в интервале рабочих температур от 20 до -60°C	≤10%
Стойкость к воздействию повышенной влажности: относительная влажность при температуре 35°C, %	98
Наработка, ч	100 000
Срок сохраняемости, не менее, лет	25

Обозначение при заказе: Конденсатор К73-76-250 В-10 мкФ±10% АЖЯР. 673633.011 ТУ

				Размеры, м	M		
U _{ном} , B	С _{ном} , мкФ					d	Масса, г
		D _{max}	L _{max}	ł	Номин.	Пред. откл.	
	1	8					3
	1,5	8,5	30		0,6		4
	2,2	10				_	5
	3,3	11					6
	4,7	13		32 ⁺⁵	0,8	-	8
250	6,8 10	15				-	11 14
200	15	19					22
	22	22	42		1,0		26
	33	26					36
	47	30				1 [60
	68	34	60	25 ⁺⁵	2,0		80
	100	36				_	100
	0,47	8					3
	0,68	9			0,6	-	5
	1	10,5	30		0,8		6
	1,5	12,5	15				8
	2,2	14,5		32 ⁺⁵			9
	3,3	15					16
400	4,7	17	42			±0,1	20
	6,8	21			1,0	10,1	25
	10	20					30
	15	26	00				50
	22	31	60	o=+5	2,0		60
	33	36		25 ⁺⁵			90
	0,1	7					
	0,15	8					3
	0,22	9					
	0,33	10	30				5
	0,47	12			0,8		6
	0,68	13		32 ⁺⁵	0,0		7,5
630	1	16		32			10
	1,5	16] [18
	2,2	19	42				25
	3,3	23			1,0		30
	4,7	22					40
	6,8	26	60				50
	10	31		25 ⁺⁵	2,0		70

 $\frac{U_t}{U_{\text{HOM}}}$



Зависимость допускаемой амплитуды переменного синусоидального напряжения или допускаемой амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_f от частоты f

Пример определения U_f .: 1) Дано: $U_{\text{ном}}$ = 400 B; $C_{\text{ном}}$ = 10 мкФ; f = 10 кГц Находим: U_f = 1,9 B; 2) Дано: $U_{\text{ном}}$ = 250 B; $C_{\text{ном}}$ = 1 мкФ; f = 1 кГц Находим: U_f = 28,8 B.

Зависимость допускаемого размаха импульсного напряжения ΔU_u от частоты следования импульсов F_u , длительности наименьшего из временных участков τ_u , соответствующих фронту τ_{ϕ} или спаду τ_c импульса, номинальной емкости и номинального напряжения

Пример определения ΔU_{u} : 1) Дано: F_{u} = 100 Γ ц; τ_{u} = 10⁻⁴c; $U_{\text{ном}}$ = 630 B; $C_{\text{ном}}$ = 2,2 мкФ 2) Дано: F_{u} = 1 к Γ ц; τ_{u} = 10⁻⁵c; $U_{\text{ном}}$ = 250 B; $C_{\text{ном}}$ = 1 мкФ

Находим: ΔU_{μ} = 97 B; Находим: ΔU_{μ} = 10,8 B.

Максимально допускаемые значения скорости изменения напряжения

U _{ном} , В	С _{ном} , мкФ	S, В/мкс
	1 – 6,8	1,0
	10 – 33	0,7
250	47	0,6
	68	0,5
	100	0,4
	0,47; 0,68	1,5
	1 – 2,2	1,6
400	3,3 – 6,8	1,1
	10	0,7
	15 – 33	0,8
	0,1; 0,15	2,5
	0,22 – 1,0	2,6
630	1,5	1,7
	2,2; 3,3	1,8
	4,7 – 10	1,2

Допускаемая амплитуда импульсного тока I_m , A, определяется по формуле:

 $I_m = S \cdot C_{HOM}$

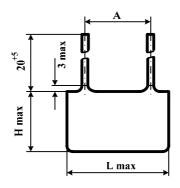
где S – скорость изменения напряжения, В/мкс;

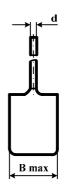
 $C_{\text{ном}}$ – номинальная емкость, мк Φ .

Технические условия: ОЖ0. 461.112 ТУ

ОЖО.461.160 ТУ

Предназначены для работы в цепях постоянного, пульсирующего токов и в импульсных режимах.


Конструкция: окукленные.


Specification: ОЖ0. 461.112 ТУ ОЖ0.461.160 ТУ

Designed to operate in DC, and ripple

current circuits and in pulse mode.

Design: dipped.

Номинальная емкость	0,001 2,2 мкФ	Rated capacitance	0,001 2,2 μF
Номинальное напряжение	250, 315, 1000, 1600, 2000 B	Rated voltage	250, 315, 1000, 1600, 2000 V
Допускаемое отклонение емкости	±5, ±10; ±20 %	Capacitance tolerance	±5, ±10; ±20 %
Тангенс угла потерь при f = 1кГц	≤0,001	Dissipation factor at f = 1 kHz	≤0,001
Сопротивление изоляции для Сном ≤ 0,33 мкФ Uном = 315 B Uном = 250, 1000, 1600, 2000 B	≥100 000 Mom ≥50 000 Mom	Insulation resistance at Cr ≤ 0,33 µF Ur = 315 V Ur = 250, 1000, 1600, 2000 V	≥100 000 MOhm ≥ 50 000 MOhm
Постоянная времени для Сном > 0,33 мкФ Uном = 250 В	≥ 15 000 Мом·мкФ	Time constant at Cr > 0,33 μF Ur = 250 V	≥15 000 MOhm·µF
Интервал рабочих температур	-60+85°C	Operating temperature range	-60+85°C
TKE	(-500…0)·10 ⁻⁶ град ⁻¹	TC	(-500 0) ppm/°C
Наработка	15 000 ч	Operating time	15 000 hours
Срок сохраняемости	20 лет	Shelf life	20 years
Климатическое исполнение	УХЛ, В (93±3% относит. влажности при 40±2°C, 21	Climatic categories	RH 93±3%, 40±2°C, 21 days

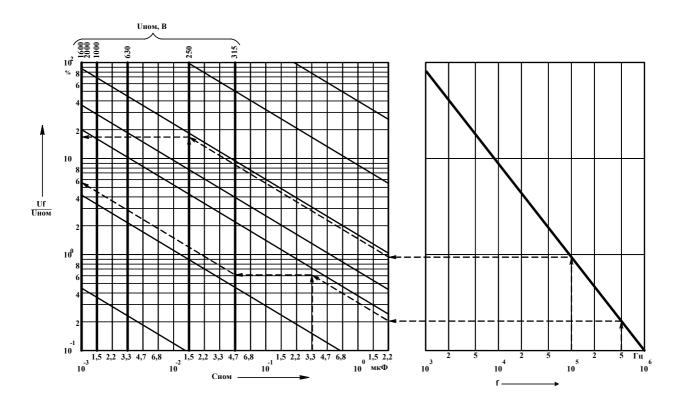
Обозначение при заказе:

Конденсатор K78-2 - 1000 B - 0,1 мкФ ±10% - - B^{*}) - №ТУ

сутки)

Ordering example:

Capacitor K78-2 - 1000 V - 0,1 µF ±10% - - №TУ


^{*)} для конденсаторов всеклиматического исполнения

U _{ном} , В U _r , V	С _{ном} , мкФ С _г , µF	Размеры, мм / Dimensions, mm					Macca, r Mass, g
		L _{max}	B _{max}	H _{max}	Α	d	max
250	0.068	21	9	19	17.5		10
	0.10		9	19	17.5		10
	0.15		11	21	17.5	0.8	15
	0.22	27	11	20	22.5	0.6	15
	0.33		14	24	22.5		20
	0.47		14	24	22.5		20
	0.68	20	14	24	27.5	1.0	25
	1.0	32	18	28	27.5		30
	1.5	42	16	28	37.5	1.0	40
	2.2	42	20	28	37.5	1	45
	0.010	20.5	7	11.5	17.5		3.5
	0.012		8	12.5	17.5		5
	0.015		9	14	17.5	1	5
	0.018		10	14.5	17.5	1	6
	0.022		10.5	15	17.5		6
	0.027		9.5	14.5	22.5		7
315	0.033		9.5	16	22.5	0.8	7
	0.039	26	10	16.5	22.5		7
	0.047	1	11	18	22.5	1	8
	0.056		12.5	19.5	22.5		8
	0.068	31.5	11	20	27.5		11
	0.082		11.5	20.5	27.5		11
	0.10		12.5	22	27.5	1	15
	0.0010	20	5.6	9	17.5	0.6	-
	0.0012		6.7	10			2
	0.0015		7.1	10			I
	0.0018		7.1	10			
	0.0022		8	11			
	0.0027		8	11.5			3
	0.0033		8	11.5			
	0.0039		8.5	11.5			
	0.0047		6.7	13			4
	0.0056		7.1	13			
1000	0.0068		7.5	14			
	0.0082		8	15	7		5
	0.010		8	18	1		
	0.012		8.5	18	7		6
	0.015	30	7	17			6
	0.018		7.5	17	1		
	0.022		8	18	27.5		7
	0.027		9	19			8
	0.033		10	20	7		10
	0.039		10.5	20	1		12
	0.047	40	9	21	37.5		12
	0.056		10	22			15
	0.068		11	24			18
	0.082		12	25			18
	0.10		14	26			25
	0.12	1	15	28	1		28

U _{ном} , В U _r , V	С _{ном} , В С _г , µF	Размеры, мм / Dimensions, mm					
J,, :		L _{max}	B _{max}	H _{max}	Α	d	max
	0.0010	20	6	10	17.5	0.8	2
	0.0012		8	11			
	0.0015						4
	0.0018						
	0.0022	25	6	12	22.5		6
	0.0027						
	0.0033						7
	0.0039						
	0.0047		8	16			
	0.0056						8
1600	0.0068		10	18			
1000	0.0082		11	19			10
	0.010						
	0.012	30	8	18	27.5		7
	0.015						
	0.018		10	20			10
	0.022						
	0.027	40	12	25	37.5	1.0	40
	0.033						18
	0.039		15	28			
	0.047						28
	0.056	 					
2000	0.0010	27	8	14	22.5	0.8	10
	0.0015 0.0022						
	0.0022		11	20			15
	0.0033				- 27.5	1.0	
	0.0068	32					20
	0.0008		16	24			
	0.015						25

Зависимость допускаемой амплитуды переменного синусоидального напряжения или амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_f от частоты f.

Permissible amplitude of AC sinusoidal voltage or amplitude of AC sinusoidal component of ripple voltage U_f as a function of frequency f.

Ограничения:

 $U_f \le U_{\text{hom}};$

 $U_f {\le}\,750~B$ для $U_{\scriptscriptstyle{\text{HOM}}} {=} 1000~B;\,1600~B$

 $U_{\mathrm{f}} {\leq 1100~\mathrm{B}}$ для $U_{\scriptscriptstyle{\mathrm{HOM}}} {=} 2000~\mathrm{B}$

Пример определения U_f :

Дано:

f=10 $^5\,\Gamma$ ц, $U_{\text{ном}}\!\!=\!\!2000$ В, $C_{\text{ном}}\!\!=\!\!0,\!015$ мкФ

Находим:

 $U_f = 18\%$ of $U_{HOM} = 360 B$

Дано:

 $f=5\cdot10^5$ Гц, $U_{\text{ном}}=315$ В, $C_{\text{ном}}=0.33$ мкФ

Находим:

 $U_f = 5.7\%$ of $U_{HOM} = 18 B$

Limits:

 $U_f \le U_r$;

 $U_f \le 750 \text{ V}$ для Ur=1000 V; 1600 V

 $U_f \le 1100 \text{ V for } U_r = 2000 \text{ V}$

Example of calculation of U_f .

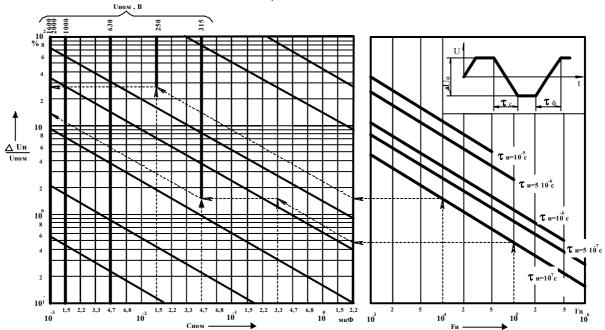
Given:

 $f=10^5$ Hz, $U_r=2000$ V, $C_r=0.015$ μ F

Finding:

 $U_f = 18\%$ of $U_r = 360 \text{ V}$

Given:


 $f=5\cdot10^5$ Hz, $U_r=315$ V, $C_r=0.33$ μ F

Finding:

 $U_f = 5.7\%$ of $U_r = 18 \text{ V}$

Зависимость допускаемого размаха импульсного напряжения $\Delta U_{\text{и}}$ от частоты следования импульсов $F_{\text{и}}$, длительности наименьшего из временных участков τ_{u} , соответствующих фронту τ_{ϕ} или спаду τ_{c} импульса, и номинальной емкости $C_{\text{ном}}$.

Permissible peak-to-peak pulse voltage ΔU_u as a function of pulse repetition frequency F_u , minimal temporal sector τ_u , corresponding pulse leading edge slope τ_ϕ or pulse trailing edge slope τ_c and rated capacitance C_r .

Ограничения: ∆U_и≤U_{ном};

ΔU_и≤1500 В для U_{ном}=1600 В

Пример определения $\Delta U_{\underline{u}}$:

Дано: $F_u = 10^4 \Gamma \mu$, $\tau_u = 10^{-7} c$,

 U_{HOM} =2000 B, C_{HOM} =0,015 мкФ Находим: ΔU_{M} =28% от U_{HOM} = 560 B

Дано: F_{ν} =10⁵ Γ ц, τ_{ν} =10⁻⁷ c, $U_{\text{ном}}$ =315 B,

С_{ном}=0,33 мкФ

Находим: $\Delta U_{\text{и}} = 13,5\%$ от $U_{\text{ном}} = 42,5$ В

Limits: $\Delta U_{\text{\tiny HOM}} \leq U_{\text{\tiny HOM}}$;

 $\Delta U_{\text{\tiny M}} \leq 1500 \text{ B}$ for $U_{\text{\tiny HOM}} = 1600 \text{ B}$

Example of calculation of ΔU_u :

Given: $F_{\text{N}}=10^4 \text{ Hz}, \tau_{\text{N}}=10^{-7} \text{ c},$

U_r=2000 V,C_r=0,0015 μF

Finding: $\Delta U_{\text{\tiny N}}$ =28% of $U_{\text{\tiny T}}$ =560 V

Given: $F_{\mu}=10^5$ Hz, $\tau_{\mu}=10^{-7}$ c, $U_r=315$ V,

 $C_r = 0.33 \, \mu F$

Finding: $\Delta U_{N}=13,5\%$ of $U_{\Gamma}=42,5$ V

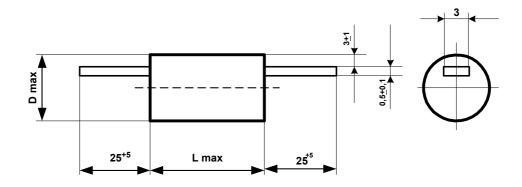
Технические условия: ОЖ0. 461.144 ТУ Предназначены для работы в цепях постоянного, переменного и пульсирующего

токов.

Конструкция: обернуты липкой лентой, залиты

по торцам эпоксидным компаундом.

Выводы: ленточные 3 × 0,5 мм.


Specification: ОЖ0. 461.144 ТУ

Designed to operate in DC, AC and ripple

current circuits.

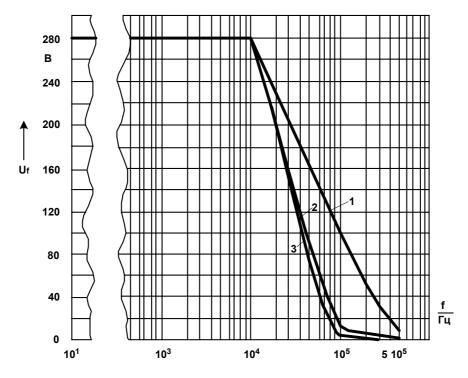
Design: wrapped with adhesive tape; capacitor ends sealed with epoxy compound.

Terminations: strip 3 × 0,5 mm.

Номинальная емкость	470 пФ 0,047 мкФ	Rated capacitance	470 pF 0,047 μF
Номинальное напряжение	2 кВ	Rated voltage	2 kV
Допускаемое отклонение емкости для Сном ≤ 1000 пФ для Сном > 1000 пФ	±10; ±20 % ±5, ±10; ±20 %	Capacitance tolerance at Cr ≤ 1000 pF at Cr > 1000 pF	±10; ±20 % ±5, ±10; ±20 %
Тангенс угла потерь при f = 1кГц	≤0,001	Dissipation factor at f = 1 kHz	≤0,001
Сопротивление изоляции	≥100 000 Мом	Insulation resistance	≥100 000 MOhm
Интервал рабочих температур	-60+85°C	Operating temperature range	-60+85°C
TKE	(-500…0).10 ⁻⁶ град ⁻¹	TC	(-500 0) ppm/°C
Наработка	15 000 ч	Operating time	15 000 hours
Срок сохраняемости	10 лет	Shelf life	10 years
Климатическое исполнение	УХЛ, В (93±3% относит. влажности при 40±2°C, 21 сутки)	Climatic categories	RH 93±3%, 40±2°C, 21 days
	, ,		

Обозначение при заказе:

Конденсатор K78-5 - 2 кВ - 0,01 мк Φ - \pm 10%

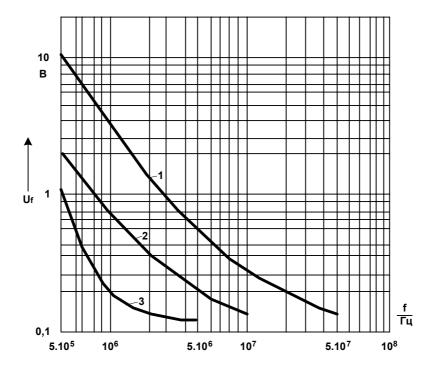

Ordering example:

Capacitor K78-5 - 2 kV - 0,01 μ F - \pm 10%

С _{ном} , мкФ С _г , µF	D _{max} , mm	L _{max} mm	Macca, г Mass, g max	С _{ном} , мкФ С _г , µF	D _{max} , mm	L _{max} mm	Macca, г Mass, g max
0.00047	9		3	0.0047	12		8
0.00068	10		3	0.0068	16	34	12
0.00082	12		4	0.010	16	04	12
0.0010	12	24	4	0.015	20		14
0.0015	14		5	0.022	20		20
0.0022	15		6	0.033	20	50	20
0.0033	16		8	0.047	22		25

Зависимость допускаемой амплитуды переменного синусоидального напряжения U_f от частоты f в диапазоне до 10⁵ Гц.

Permissible amplitude of AC sinusoidal voltage U₁ as a function of frequency f in the range up to 10⁵ Hz

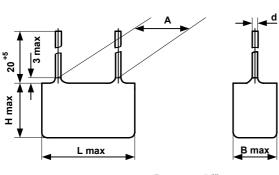


- 1) C_{ном} = 470 ... 1000 пФ
 - 2) C_{ном} = 1500 ... 6800 пФ
 - 3) $C_{HOM} = 0.01 \dots 0.047 \text{ мк}\Phi$

- 1) C_r = 470 ... 1000 pF 2) C_r = 1500 ... 6800 pF
- 3) $C_r = 0.01 \dots 0.047 \mu F$

Зависимость допускаемой амплитуды переменного синусоидального напряжения U_f от частоты f в диапазоне от 5·10⁵ до 10⁸ Гц.

Permissible amplitude of AC sinusoidal voltage U_f as a function of frequency f in the range between $5 \cdot 10^5$ and 10^8 Hz


- 1) $C_{HOM} = 470 \dots 1000 \text{ } \Pi\Phi$
- 2) C_{ном} = 1500 ... 6800 пФ 3) C_{ном} = 0,01 ... 0,047 мкФ

- 1) C_r = 470 ... 1000 pF
- 2) C_r = 1500 ... 6800 pF
- 3) $C_r = 0.01 \dots 0.047 \, \mu F$

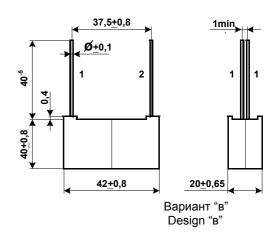
Технические условия: АДПК. 673635.007 ТУ

Предназначены для работы в цепях постоянного, переменного, пульсирующего токов и в импульсных режимах.

Конструкция: вариант "б" — окукленные, вариант "в" — в пластмассовом корпусе.

Вариант "б" Design "б"

Номинальная емкость вариант б	0,001 2,2 мкФ
вариант в	0,68 мкФ
Номинальное напряжение	
вариант б	250, 315, 630,
вариант в	1000, 1600, 2000 B 1000 B
Допускаемое отклонение емкости	±5, ±10; ±20 %
Тангенс угла потерь при f = 1кГц	
Uном = 250 B	≤0,0015
Uном > 250 B	≤0,0010
Сопротивление изоляции	
для Сном ≤ 0,33 мкФ	>400,000 Marra
Uном = 315 B Uном = 250, 1000, 1600, 2000 B	≥100 000 Mom ≥50 000 Mom
200, 1000, 1000, 2000 B	=00 000 MOM
Постоянная времени	. 45 000 14
для Сном > 0,33 мкФ Uном = 250 B	≥15 000 Мом∙мкФ
5110m 200 B	
Интервал рабочих температур	-60+85°C
TKE	(-500… 0).10 ⁻⁶ град ⁻¹
Наработка	15 000 ч
Срок сохраняемости	12 лет
Климатическое исполнение	УХЛ, В (93 \pm 3% относит. влажности при 40 \pm 2 $^{\circ}$ C, 21 сутки)


Обозначение при заказе:

Конденсатор $\dot{\text{K78-106}}$ - 250 B - 1,5 мкФ - ± 10% -17,5 мм (A)

Specification: АДПК. 673635.007 ТУ

Designed to operate in DC, AC and ripple current circuits and in pulse mode.

Design: design "6" is dipped, design "B" is in plastic case.

Rated capacitance design "б" design "в"	0,001 2,2 μF 0,68μF
Rated voltage design "б"	250, 315, 630, 1000, 1600, 2000 V
design "в" Capacitance tolerance	1000 V ±5, ±10; ±20 %
Dissipation factor at f = 1 kHz Ur = 250 V Ur > 250 V	≤0,0015 ≤0,0010
Insulation resistance at Cr ≤ 0,33 µF Ur = 315 V Ur = 250, 1000, 1600, 2000 V	≥100 000 MOhm ≥ 50 000 Mohm
Time constant at Cr > 0,33 μF Ur = 250 V	≥15 000 MOhm· µF
Operating temperature range	-60+85°C
TC	(-500 0) ppm/°C
Operating time	15 000 hours
Shelf life	12 years
Climatic categories	RH 93±3%, 40±2°C, 21 days

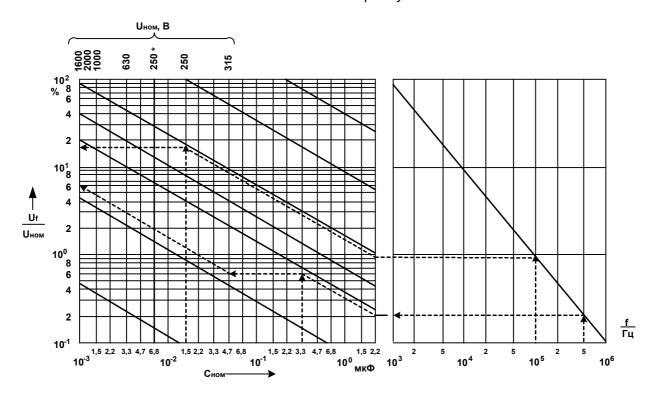
Ordering example:

Capacitor K78-106 - 250 V - 1,5 μ F - \pm 10% - 17,5 mm (A)

Вариант "б" / Design "б"

U _{HOM} , B U _r , V	C _{HOM} , ΜΚΦ C _r , μF 0.068 0.068* 0.10 0.10* 0.15* 0.22 0.22* 0.33 0.33*	L _{max} 22 16 22 16 22 28 22	7 8 9	H _{max} 14 12 15 13	17.5 12.5 17.5	d	Mass, g max 8.0
	0.068* 0.10 0.10* 0.15* 0.22 0.22* 0.33	16 22 16 22 28	8	12 15	12.5		
-	0.10 0.10* 0.15* 0.22 0.22* 0.33	22 16 22 28		15	1		6.0
-	0.10* 0.15* 0.22 0.22* 0.33	16 22 28	9		17.5		6.0
-	0.15* 0.22 0.22* 0.33	22 28	-	13			8.0
-	0.22 0.22* 0.33	28			12.5		6.0
-	0.22* 0.33			14	17.5		
	0.33	22		16	22.5	0.8	10
		22	10	14	17.5	0.0	
	U 33*	28		20	22.5		15
	0.33	22		19	17.5		10
250 _	0.39*	22	12	21	17.5		10
200	0.47	28	13	22	22.5		15
	0.47*	22	12	22	17.5		10
	0.68	32	13	23	27.5		20
	0.68*	28	10	22	22.5		15
	1.0	32	15	28	27.5		25
	1.0*	28	16	24	22.5	1.0	20
	1.5	42	15	28	37.5	1.0	35
	1.5*	32	17	26	27.5		25
	2.2	42	18	32	37.5		40
	2.2*	32	21	30	27.5		35
	0.010	20.5	7	11.5			3.5
	0.012		8	12.5			5.0
	0.015		9	14	17.5		5.0
	0.018		10	14.5			6.0
	0.022		10.5	15		0.8	6.0
	0.027		0.5	15			
	0.033		9.5	16	22.5		7.0
045	0.039	26	10	16.5			
315 —	0.047		11	18			0.0
	0.056		12.5	19.5			8.0
	0.068		11	20			4.4
	0.082		11.5	20.5			11
	0.10	31.5	12.5	22	27.5		15
	0.15				1		20
	0.22		17	26		1.0	25
	0.33	40		34	37,5		40
	0.0010.0022		4	8		0.6	2.0
	0.0033		6	10	1		3.0
	0.0047		7	11	1		4.0
630	0.0068	20	8	12	17.5		6.0
	0.01		9		1	0.0	
	0.015		10	19		8.0	7.0
	0.022		11	1			12
	0.033	0.5		66	00.5		18
	0.047	25	10	20	22.5		24
-	0.068	0.5	12	22			30
-	0.10	30	16		27.5	1.0	35
	0.15	40	14		37.5		40

Вариант "б" / Design "б"


II B	С _{ном} , мкФ		Масса, г				
U _{ном} , В U _r , V	C _r , µF	L _{max}	B _{max}	ни / Dimen	Α	d	Mass, g max
	0.0010		5.6	9			
	0.0012		6.7	10		0.6	2.0
	0.0015		7.1		4		
	0.0018			11	╡ .		_
	0.0022 0.0027		8.0				3.0
	0.0027		0.0	11.5			
	0.0039	20	8.5	1	17.5		
	0.0047		6.7	10	=		4.0
	0.0056		7.1	13			
	0.0068		7.5	14	1		
	0.0082		8.0	15		0.8	5.0
	0.010			18		0.6	
1000	0.012		8.5	10			6.0
	0.015		7.0	17			
	0.018	_	7.5		4		7.0
	0.022	30	8.0	18 19	27.5		9.0
	0.027 0.033		9.0 10.0		+		8.0 10
	0.039	-	10.5	20			
	0.047	40	9.0	21			12
	0.056		10	22	7	1.0	15
	0.068		11	24	7		
	0.082		12	25	37.5		18
	0.10		14	26			25
	0.12		15	28			28
	0.15		17	30			35
	0.0010	20	6	10			2.0
	0.0012				17.5		
	0.0015		8	11		22.5	4.0
	0.0018						0.0
	0.0022 0.0027						6.0
	0.0027		6	12			7.0
	0.0039						7.0
	0.0047	25	_		22.5		
	0.0056		8	16	22.0		8.0
	0.0068		10	18	7		
	0.0082				7		10
1600	0.010		11	19			10
	0.012		8	18			7.0
	0.015	30		10	27.5		7.0
	0.018		10	20	21.3		10
	0.022				+		+
	0.027		10	25			40
	0.033 0.039		12	25			18
	0.039	40			4		
	0.056		15	28	37.5	1.0	28
	0.068		10	20			20
	0.10		40	32	┪		35
	0.15		18	40	7		40
	0.0010		7				
	0.0015	25		13	22.5	0.8	8.0
	0.0022	20	9	15	3.22	0.0	10
2000	0.0033		10	17			10
2000	0.0047		9		_		15
	0.0068	30	10	18	27.5	1.0	
1	0.010		12	21	4		20
	0.015		15	23			

Bариант "в" Design "в"

U _{ном} , В	С _{ном} , мкФ	Размеј	ns, mm	Масса, г	
U _r , V	C _r , μF	L	В	Н	Mass, g max
1000	0,68	42±0,8	20±0,65	40±0,8	65

Зависимость допускаемой амплитуды переменного синусоидального напряжения или амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_f от частоты f

Permissible amplitude of AC sinusoidal voltage or amplitude AC sinusoidal component of ripple voltage U_f as a function of frequency f

250* - для номиналов, отмеченных в таблице *

250* - for capacitors pointed out in the table by*

Ограничения:

 $U_f \leq U_{HOM}$

 $U_f \le 750 \; B$ для $U_{\text{\tiny HOM}} = 1000 \; B; \; 1600 \; B$

 $U_f \le 1100 \; B$ для $U_{\text{\tiny HOM}}$ = 2000 B

Пример определения U_f

Дано: f = 10⁵ Гц, U_{ном} = 2000 В,

С_{ном} = 0,015 мкФ

Находим: U_f = 18% от $U_{\text{ном}}$ = 360 B

Дано: $f = 5.10^5$ Гц, $U_{\text{ном}} = 315$ В,

 $C_{HOM} = 0.33 \text{ мк}\Phi$

Находим: $U_f = 5.7\%$ от $U_{HOM} = 18$ В

Limits:

 $U_f \leq U_r$

 $U_f \le 750 \text{ V for } U_r = 1000 \text{ V}; 1600 \text{ V}$

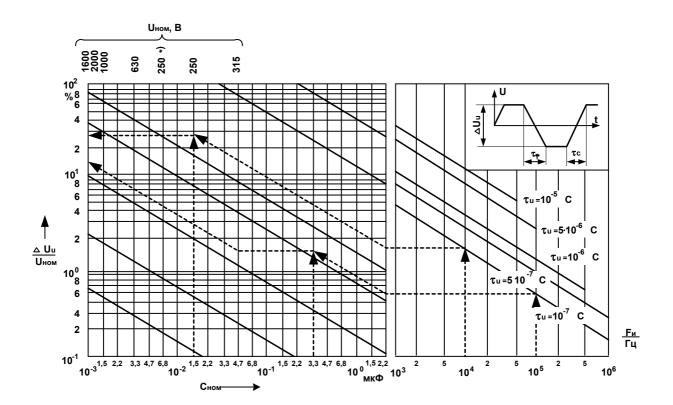
 $U_f \le 1100 \text{ V for } U_r = 2000 \text{ V}$

Example of calculation of Uf

Given: $f = 10^5 \text{ Hz}$, $U_r = 2000 \text{ V}$,

 $C_r = 0.015 \mu F$

Finding: $U_f = 18\%$ of $U_r = 360 \text{ V}$


Given: $f = 5.10^5 \text{ Hz}$, $U_r = 315 \text{ V}$,

 $C_r = 0.33 \mu F$

Finding: $U_f = 5.7\%$ of $U_r = 18 \text{ V}$

Зависимость допускаемого размаха импульсного напряжения ΔU_u от частоты следования импульсов F_u , длительности наименьшего из временных участков τ_u , соответствующих фронту τ_{φ} или спаду τ_c импульса, и номинальной емкости Сном.

Permissible peak-to-peak pulse voltage ΔU_u as a function of pulse repetition frequency F_u , minimal temporal sector τ_u , corresponding pulse leading edge slope τ_ϕ or pulse trailing edge slope τ_c and rated capacitance C_r

250* - для номиналов, отмеченных в таблице *

250* - for capacitors pointed out in the table by*

```
\Delta U_{\text{и}} \leq 1500 \; \text{В} \; \text{для} \; U_{\text{ном}} = 1600 \; \text{В} Пример определения \Delta U_{\text{и}} Дано: F_{\text{и}} = 10^4 \; \Gamma_{\text{Ц}}, \; \tau_{\text{и}} = 10^{-7} \; \text{с}, \\ U_{\text{ном}} = 2000 \; \text{B}, \; C_{\text{ном}} = 0,015 \; \text{мкФ} Находим: \Delta U_{\text{и}} = 28\% \; \text{от} \; U_{\text{ном}} = 560 \; \text{B} Дано: F_{\text{и}} = 10^5 \; \Gamma_{\text{Ц}}, \; \tau_{\text{и}} = 10^{-7} \; \text{c},
```

 $U_{\text{ном}}$ = 315 B, $C_{\text{ном}}$ = 0,33 мкФ

 $\Delta U_{\text{H}} = 13,5\% \text{ ot } U_{\text{HOM}} = 42,5 \text{ B}$

Ограничения: $\Delta U_{\text{и}} \leq U_{\text{ном}}$

Находим:

Example of calculation of
$$\Delta U_{\text{u}}$$
 Given:
$$F_{\text{u}} = 10^4 \text{ Hz} \; , \; \tau_{\text{u}} = 10^{-7} \; \text{c}, \\ U_{\text{r}} = 2000 \; \text{B}, \; C_{\text{r}} = 0,015 \; \mu\text{F} \\ \text{Finding:} \\ \Delta U_{\text{u}} = 28\% \; \text{of} \; U_{\text{r}} = 560 \; \text{V} \\ \text{Given:} \\ F_{\text{u}} = 10^5 \; \text{Hz} \; , \; \tau_{\text{u}} = 10^{-7} \; \text{c}, \\ U_{\text{r}} = 315 \; \text{V}, \; C_{\text{r}} = 0,33 \; \mu\text{F} \\ \text{Finding:} \\ \Delta U_{\text{u}} = 13,5\% \; \text{of} \; U_{\text{r}} = 42,5 \; \text{V} \\ \end{cases}$$

 $\Delta U_{\text{N}} \leq 1500 \text{ V for } U_{\text{r}} = 1600 \text{ V}$

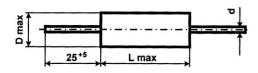
Limits:

 $\Delta U_{\mu} \leq U_{r}$

Предельно допускаемые амплитуда импульсного тока $I_{\rm m}$ и скорость изменения напряжения dU/dt Maximum permissible amplitude of pulse current $I_{\rm m}$ and rate of the voltage change dU/dt

U _{ном} , В U _r , V	С _{ном} , мкФ С _г , µF	I _m , max, A	dU/dt, max, V / μs
	Вариант "б"	/ Design "б"	
	0,0680,15	6,815	100
250	0,220,47	15,432,9	70
	0,681,0	3450	50
	1,52,2	4566	30
	0,0680,1	9,514	140
250*	0,150,47	1237,6	80
250	0,681,0	40,860	60
	1,52,2	6088	40
	0,0010,022	9198	9000
630	0,0330,047	165235	5000
000	0,0680,1	238350	3500
	0,15	300	2000
	0,0010,0039	15,560,45	15500
1000	0,00470,012	51,7132	11000
1000	0,0150,039	75192	5000
	0,0470,15	155,1495	3300
	0,0010,0018	18,533,3	18500
1600	0,00220,01	22100	10000
1000	0,0120,022	72132	6000
	0,0270,15	108600	4000
	0,0010,0015	2537,5	25000
2000	0,00220,0033	6699	30000
	0,00470,015	75,2240	16000
	Вариант "в"	/ Design "в"	
1000	0,68	60	87

Технические условия: АЖЯР. 673635.000 ТУ


Предназначены для работы в цепях постоянного, переменного, пульсирующего токов и в импульсных режимах.

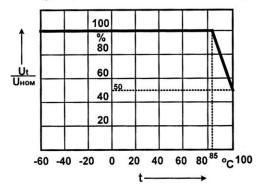
Конструкция: обернуты липкой лентой, залиты по торцам эпоксидным компаундом.

Specifications: AЖЯР. 673635.000 ТУ

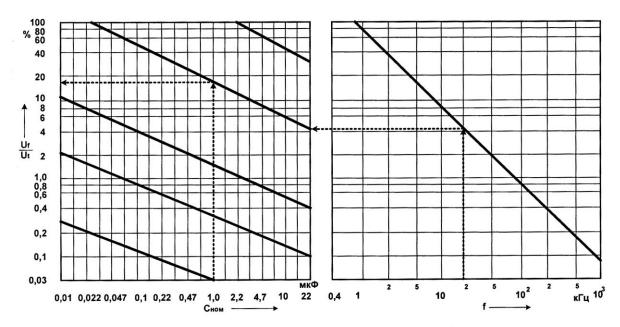
Designed to operate in DC, AC and ripple current circuits and in pulse mode.

Design: wrapped with adhesive tape; capacitor ends sealed with epoxy compound.

Номинальная емкость	0,01 22 мкФ	Rated capacitance	0,01 22 μF
Номинальное напряжение (в интервале температур -60 °С+85°С)	200 B	Rated voltage (temperature range -60 °C+85°C)	200 V
Допускаемое отклонение емкости для Сном ≤ 0,47 мкФ для Сном > 0,47 мкФ	±5, ±10; ±20 % ±2, ±5, ±10; ±20 %	Capacitance tolerance at Cr ≤ 0,47 µF at Cr > 0,47 µF	±5, ±10; ±20 % ±2, ±5, ±10; ±20 %
Тангенс угла потерь при f = 1кГц	≤ 0,0015	Dissipation factor at f = 1 kHz	≤ 0,0015
Сопротивление изоляции для Сном ≤ 0,33 мкФ	≥ 50 000 Mom	Insulation resistance at Cr ≤ 0,33 μF	≥ 50 000 MOhm
Постоянная времени для Сном > 0,33 мкФ	≥15 000 Мом·мкФ	Time constant at Cr > 0,33 μF	≥ 15 000 M ohm·µF
Интервал рабочих температур	- 60+100°C	Operating temperature range	- 60+100°C
TKE	(- 500 0)·10 ⁻⁶ град ⁻¹	тс	(- 500 0) ppm/°C
Наработка	30 000 ч	Operating time	30 000 hours
Срок сохраняемости	25 лет	Shelf life	25 years
Климатическое исполнение	УХЛ (93±3% относит. влажности при 40±2°C, 10 сутки)	Climatic categories	RH 93±3%, 40±2°C, 10 days

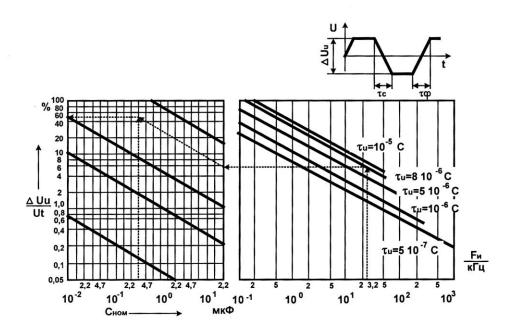

Обозначение при заказе:

Конденсатор К78-11 - 5,6 мкФ - ± 10% -АЖЯР. 673635.000 ТУ Ordering example:


Capacitor K78-11 - 5,6 μF - ± 10% - ΑЖЯР. 673635.000 ТУ

С _{ном} , мкФ С _г , µF	D _{max} , mm	L _{max} , mm	d, mm	Macca, r Mass, g max	С _{ном} , мкФ С _г , µF	D _{max} , mm	L _{max} , mm *	d, mm	Macca, r Mass, g max					
0.010					1.0	14	30	0.8	10					
0.015 0.022 0.033	6.3	16	0.6	2	1.5	16	30	1,0	15					
0.047 0.068	8	18		3 4	2.2	16	45	1,0	35					
0.10	10	10		5	3.3	20	45		50					
0.15	9		0.0	0.0	0.0	0.0	0.0	0.0	6	4.7	23	45		60
0.22	10	20	0.8	7	6.8	21		1	65					
0.33	12			8	10,0	24	60	1,0	70					
0.47	10	30	1	9	15,0	29	80		75					
0.68	12	30		9	22,0	35			80					

Зависимость допускаемого напряжения U_t от температуры окружающей среды Permissible voltage U_t as a function of ambient temperature



Зависимость допускаемой амплитуды переменного синусоидального напряжения или амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_t от частоты f Permissible amplitude of AC sinusoidal voltage or amplitude of AC sinusoidal component of ripple voltage U_t as a function of frequency f

Пример определения U_f : Дано: $f = 20 \text{ к}\Gamma \text{ц, } C_{\text{ном}} = 1 \text{ мк}\Phi$ $U_{\text{ном}} = 200 \text{ B (} \text{t} \leq 85^{\circ}\text{C)}$ Находим: $U_f = 17,5\% \text{ от } U_{\text{ном}} = 35 \text{ B}$ Example of calculation of U_t : Given: f = 20 kHz, $C_r = 1 \mu F$ $U_r = 200 \text{ V}$ ($t \le 85^{\circ}\text{C}$) Finding: $U_t = 17,5\%$ of $U_r = 35 \text{ V}$ Зависимость допускаемого размаха импульсного напряжения $\Delta U_{\text{и}}$ от частоты следования импульсов $F_{\text{и}}$, длительности наименьшего из временных участков $\tau_{\text{и}}$, соответствующих фронту τ_{ϕ} или спаду τ_{c} импульса, и номинальной емкости $C_{\text{ном}}$.

Permissible peak-to-peak pulse voltage ΔU_u as a function of pulse repetition frequency F_u , minimal temporal sector τ_u , corresponding pulse leading edge slope τ_Φ or pulse trailing edge slope τ_Φ and rated capacitance C_r

Пример определения ΔU_{μ} :

Example of calculation of ΔU_{u} :

Дано:

 $F_u = 32 \ \kappa \Gamma \mu, \ \tau_{\kappa} = 8 \cdot 10^{-6} \ c,$ $U_t = U_{\text{hom}} = 200 \ B, \ C_{\text{hom}} = 0,33 \ \text{мк} \Phi$

Находим:

 $\Delta U_{\text{\tiny M}}$ = 50% ot $U_{\text{\tiny HOM}}$ = 100 B

 $F_{\nu} = 32 \text{ kHz}$, $\tau_{\nu} = 8.10^{-6} \text{ s}$, $U_t = U_r = 200 \text{ V}$, $C_r = 0.33 \mu\text{F}$

Finding:

Given:

 $\Delta U_{u} = 50\% \text{ of } U_{r} = 100 \text{ V}$

Предельно допускаемые амплитуда импульсного тока I_m и скорость изменения напряжения dU/dt Maximum permissible amplitude of pulse current I_m and rate of the voltage change dU/dt

С _{юм} , мкФ С _г , µF	I _m , max, A	dU/dt, max, V/µs
0,010,033	1,65,3	160
0,0470,1	4,59,5	95
0,150,33	10,523	70
0,471,5	1342	28
2,24,7	3570	15
6,822	68220	10

Specification: АДПК. 673635.006 ТУ

current circuits and in pulse mode.

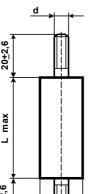
Технические условия: АДПК. 673635.006 ТУ

Предназначены для работы в цепях постоянного, переменного, пульсирующего токов и в импульсных режимах.

Конструкция: обернуты липкой лентой, залиты по торцам эпоксидным компаундом.

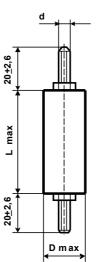
Вариант "г": D≥ 36 mm.

Вариант "в": для Uном = 2000 В, Сном = 2,2 мкФ.


Вариант "а" Design "a":

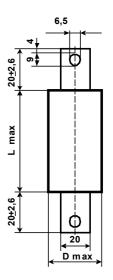
d

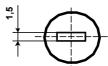
20+5


max

D max

Вариант "в" Design "в":


Designed to operate in DC, AC and ripple


Design: wrapped with adhesive tape; capacitor ends sealed with epoxy compound.

Design "r": D≥ 36 mm.

Design "B": for Ur = 2000 V, Cr = 2,2 μ F.

Вариант "г" Design "г":

Номинальная емкость Номинальное напряжение

Допускаемое отклонение емкости Тангенс угла потерь при f=1кГц Сопротивление изоляции для Сном ≤ 0,33 мкФ Постоянная времени для Сном > 0,33 мкФ Интервал рабочих температур

D max

TKF Наработка Срок сохраняемости Климатическое исполнение 0,001 15 мкФ 500, 1000, 1600, 2000 B ±5, ±10; ±20 % ≤0,0015

≥50 000 Мом

≥ 15 000 Мом. мкФ -60...+85°C (-500... 0).10⁻⁶ град ⁻¹ 10 000 ч 12 пет УХЛ (93±3% относит.

влажности при 40±2°C, 21 сутки) Rated voltage Capacitance tolerance Dissipation factor at f=1 kHz Insulation resistance at Cr ≤ 0,33 µF Time constant at Cr > 0,33 μ F Operating temperature range ΤĊ

Operating time Shelf life Climatic categories

Rated capacitance

500, 1000, 1600, 2000 V ±5, ±10; ±20 % ≤0,0015 ≥ 50 000 MOhm ≥ 15 000 MOhm. µF -60...+85°C (-500 ... 0) ppm/°C

0,001 15 µF

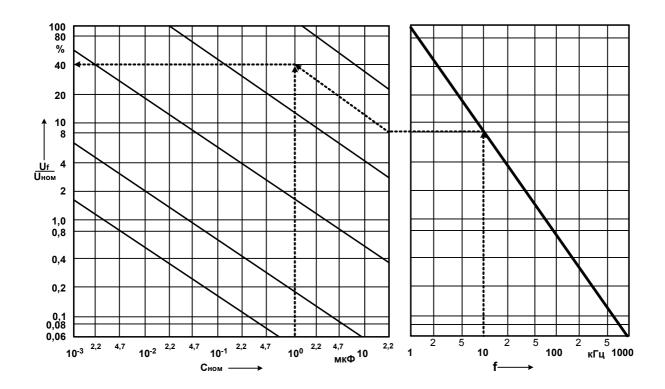
10 000 hours 12 years RH 93±3%, 40±2°C, 21 days

Обозначение при заказе:

Конденсатор К78-12a - 1600B - 0.1мкФ ±10% -- 50*) - №TУ

*) диаметр корпуса - указывается для конденсатора 1600В х 1,5мкФ

Ordering example:


Capacitor K78-12a-1600 V - 0,1µF ±10% -

- NoTY

					Масса						Масса,	
U _{ном} , B	С _{ном} , мкФ	L_{max} ,	D _{max} ,	d,	, г	U _{ном} , В	С _{ном} , мкФ	L_{max} ,	D_{max} ,	d,	Г	
U _r , V	C _r , μF	mm	mm	mm	Mass,	U_r, V	C _r , μF	mm	mm	mm	Mass,	
	0.010		7		g max 3.0		0.010		10	0.8	g max 8.0	
		22				0.015				0.0		
	0.015		8	0.0	3.0		42	12	4.0	10		
	0.022		8	0.6	4.0		0.022		14	1.0	16	
	0.033	32	8		4.0		0.033		16		18	
	0.047	02	9		8.0		0.047		16		20	
	0.068		11		8.0		0.068	62	18	1.5	30	
	0.10	40	13	0.8	8.0		0.10		25		35	
	0.15	42	16		10	1600	0.15	82	22	-	40	
	0.22		20		12		0.22		22	2.0	70	
	0.33	60	16	1.0	18		0.33		26		80	
	0.47	62	18	1.0	22		0.47	105	30		120	
	0.68	00	21		34		0.68		35		150	
500	1.0	82	24	2.0	60		1.0		42 50 43		180	
	1.5 2.2		25	2.0	80		1.5 1.5	105			280	
			30 36		100			125			240	
	3.3 4.7		42		150 180		2.2 3.3	105	60 72		440 640	
	4.7		42	160		0,001		8		040		
								27	9		4,0	
		105					0.0012			0.6	4.0	
	105			050		0,0015		7		4,0		
	6.8		50	50	M5	250	}	0,0022	32	8		4,0
						0,0033		9	8.0	4,0		
									0.0047		10	0.8
	10		60		400		0.0068	42	12	1.0	8.0	
	15		75		600		0.010	42	14		10	
	0.010		8		4.0		0.015		16		15	
	0.015	32	9	8.0	6.0	2000	0.022		15		20	
	0.022		10		7.0	2000	0.033	62	18	1.5	25	
	0.033		10	1.0	8.0		0.047	02	22	1.0	30	
	0.047		12	1.0	10		0.068		25		40	
	0.068	42	14		16		0.10	82	25		50	
	0.10		17	1.5	18		0.15		25	2.0	70	
	0.15		20		20		0.22		31		90	
1000	0.22	62	20		25		0.33	465	36		150	
	0.33	82	20	2.0	35		0.47	105	44		200	
	0.47		23		45		0.68		50	M5	300	
	0.68		26		60		1.0		60	1	440	
	1.0		29		90		1.5	105	73	N40	660	
	1.5	105	35		110		2.2	135	75	M6	750	
	2.2	105	42	M5	150							
	3.3		51 61		260							
	4.7 6.8		61 75		420 630							
	0.0		70		030							

Зависимость допускаемой амплитуды переменного синусоидального напряжения или амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_f от частоты f

Permissible amplitude of AC sinusoidal voltage or amplitude AC sinusoidal component of ripple voltage U_f as a function of frequency f

Ограничения:

 $U_f \leq U_{\text{\tiny HOM}}$

U_f ≤ 750 B для U_{ном} = 1000 B; 1600 B U_f ≤ 1100 B для U_{ном} = 2000 B

Пример определения U_f:

Дано:

f = 10 кГц, $U_{\text{ном}} = 1000 \text{ B}$, $C_{\text{ном}} = 1 \text{ мк}$ Ф

Находим:

 U_f = 40% ot $U_{\mbox{\tiny HOM}}$ =400 B

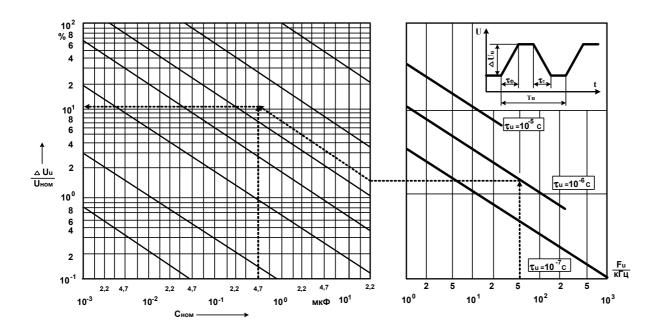
Limits:

 $U_f \leq U_r$

 $U_f \le 750 \text{ V for } U_r = 1000 \text{ V}; 1600 \text{ V}$ $U_f \le 1100 \text{ V for } U_r = 2000 \text{ V}$

Example of calculation of U_f:

Given:


f = 10 kHz , U_r = 1000 V, C_r = 1 μF

Finding:

 $U_f = 40\%$ of $U_r = 400 \text{ V}$

Зависимость допускаемого размаха импульсного напряжения ΔU_u от частоты следования импульсов F_u , длительности наименьшего из временных участков τ_u , соответствующих фронту τ_{φ} или спаду τ_c импульса, и номинальной емкости $C_{\text{ном}}$

Permissible peak-to-peak pulse voltage ΔU_u as a function of pulse repetition frequency F_u , minimal temporal sector τ_u , corresponding pulse leading edge slope τ_ϕ or pulse trailing edge slope τ_c and rated capacitance C_r

Ограничения:

 $\Delta U_{\text{\tiny HOM}} \leq U_{\text{\tiny HOM}}$

 $\Delta U_{\text{и}} \le 1500 \; \text{В} \; \text{для} \; U_{\text{ном}} = 1600 \; \text{В}$

Пример определения $\Delta U_{\text{\tiny M}}$:

Дано:

 $F_{\text{и}}$ = 50 к Γ Ц, $\tau_{\text{и}}$ = 1 мкс, $U_{\text{ном}}$ = 1000 B, $C_{\text{ном}}$ = 0,47 мк Φ

Находим:

 $\Delta U_{\text{\tiny HOM}}$ = 11% ot $U_{\text{\tiny HOM}}$ = 110 B

Limits:

 $\Delta U_{\mu} \leq U_{r}$

 $\Delta U_{\text{\tiny M}} \le 1500 \text{ V}$ for $U_{\text{\tiny F}} = 1600 \text{ V}$

Example of calculation of $\Delta U_{\mbox{\tiny M}}$:

Given:

 $F_u = 50 \text{ kHz}$, $\tau_u = 1 \text{ ms}$,

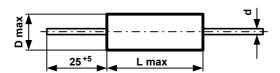
 U_r = 1000 V, C_r = 0,47 μ F

Finding:

 $\Delta U_{\rm M}$ = 11% of $U_{\rm r}$ = 110 V

SMALL HIGN-FREQUENCY METALLIZED POLYPROPYLENE FILM CAPACITORS

Технические условия: АДПК. 673635.005 ТУ


Предназначены для работы в цепях постоянного, переменного, пульсирующего токов и в импульсных режимах.

Конструкция: обернуты липкой лентой, залиты по торцам эпоксидным компаундом.

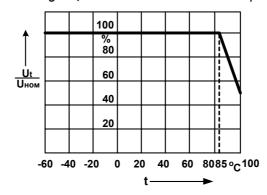
Specifications: АДПК. 673635.005 ТУ

Designed to operate in DC, AC and ripple current circuits and in pulse mode.

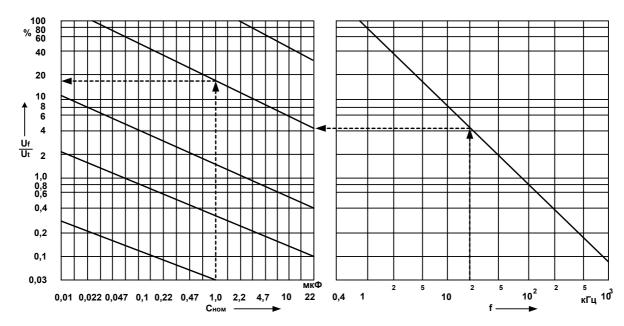
Design: wrapped with adhesive tape; capacitor ends sealed with epoxy compound.

Номинальная емкость	0,01 22 мкФ	Rated capacitance	0,01 22 μF
Номинальное напряжение (в интервале температур -60 °C+85°C)	200 B	Rated voltage (temperature range -60 °C+85°C)	200 V
Допускаемое отклонение емкости для Сном ≤ 0,47 мкФ для Сном > 0,47 мкФ	±5, ±10; ±20 % ±2, ±5, ±10; ±20 %	Capacitance tolerance at Cr ≤ 0,47 µF at Cr > 0,47 µF	±5, ±10; ±20 % ±2, ±5, ±10; ±20 %
Тангенс угла потерь при f = 1кГц	≤0,0015	Dissipation factor at f = 1 kHz	≤0,0015
Сопротивление изоляции для Сном ≤ 0,22 мкФ	≥50 000 Мом	Insulation resistance at Cr ≤ 0,22 µF	≥ 50 000 MOhm
Постоянная времени для Сном > 0,22 мкФ	≥15 000 Мом·мкФ	Time constant at Cr > 0,22 μF	≥ 15 000 Mohm·µF
Интервал рабочих температур	-60+100°C	Operating temperature range	-60+100°C
TKE	(-500 0)·10 ⁻⁶ град ⁻¹	TC	(-500 0) ppm/°C
Наработка	15 000 ч	Operating time	15 000 hours
Срок сохраняемости	12 лет	Shelf life	12 years
Климатическое исполнение	УХЛ (93±3% относит. влажности при 40±2°C, 21 сутки)	Climatic categories	RH 93±3%, 40±2°C, 21 days

Обозначение при заказе:


Конденсатор K78-19 – 200 В - 5,6 мкФ - \pm 10% – L* * L указывается для Сном = 0,47 ... 2,2 мкФ

Ordering example:


Capacitor K78-19 - 200 V - 5,6 μ F - \pm 10% -L* *L is for Cr = 0,47 ... 2,2 μ F

С _{ном} , мкФ С _г , µF	D _{max} , mm	L _{max} , mm	d, mm	Macca, r Mass, g max	С _{ном} , мкФ С _г , µF	D _{max} , mm	L _{max} , mm	d, mm	Macca, r Mass, g max					
0.010					1.0	14	30	0.8	10					
0.015	6.3	16	0.6	2	1.0	18	20		12					
0.022	0.5	10	0.0		1.5	16	30		15					
0.033					3	1.5	18	25		15				
0.047	8			3	1.8	20	25		20					
0.068	9	18		4	2.2	16	45		35					
0.10	10			5	2.2	18	35		30					
0.15	9								6	3.3	20		1.0	50
0.22	10	20	0.8	7	4.7	23	45		60					
0.33	12	ĺ		0.8	0.6	0.0	8	5.6	25			00		
0.47	10	30		9	6.8	21			65					
0.47	14	14 20 8	8	10	24	00		70						
0.68	12	30		9	15	29	60		75					
0.00	16	20		10	22	35			80					

Зависимость допускаемого напряжения U_t от температуры окружающей среды Permissible voltage U_t as a function of ambient temperature

Зависимость допускаемой амплитуды переменного синусоидального напряжения или амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_f от частоты f Permissible amplitude of AC sinusoidal voltage or amplitude of AC sinusoidal component of ripple voltage U_f as a function of frequency f

Пример определения U_f : Дано:

 $f = 20 \text{ к}\Gamma \text{ц}, C_{\text{ном}} = 1 \text{ мк}\Phi$ $U_{\text{ном}} = 200 \text{ B} \text{ (} \text{ t} \leq 85^{\circ}\text{C} \text{)}$

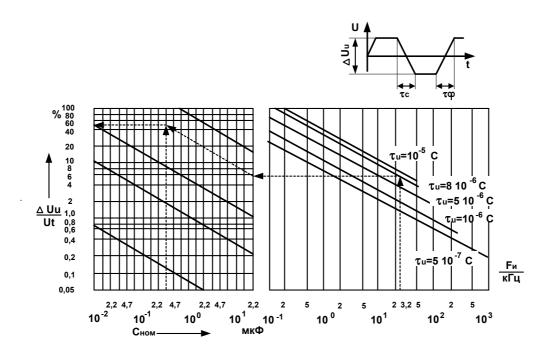
Находим:

 $U_f = 17,5\%$ ot $U_{HOM} = 35$ B

Example of calculation of U_f:

Given:

f = 20 kHz , $C_r = 1 \mu\text{F}$


 $U_r = 200 \text{ V } (t \le 85^{\circ}\text{C})$

Finding:

 $U_f = 17,5\%$ of $U_r = 35 \text{ V}$

Зависимость допускаемого размаха импульсного напряжения ΔU_u от частоты следования импульсов F_u , длительности наименьшего из временных участков τ_u , соответствующих фронту τ_{φ} или спаду $\tau_{_{\rm C}}$ импульса, и номинальной емкости $C_{_{\text{Ном}}}$.

Permissible peak-to-peak pulse voltage ΔU_u as a function of pulse repetition frequency F_u , minimal temporal sector τ_u , corresponding pulse leading edge slope τ_{ϕ} or pulse trailing edge slope τ_c and rated capacitance C_r

Пример определения ΔU_u :

Дано:

$$F_{\text{и}} = 32 \text{ к} \Gamma \text{ц}, \ \tau_{\text{и}} = 8 \cdot 10^{-6} \text{ c}, \ U_{\text{t}} = U_{\text{ном}} = 200 \text{ B}, \ C_{\text{ном}} = 0,33 \text{ мк} \Phi$$

Находим:

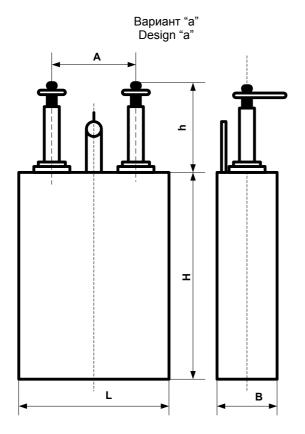
$$\Delta U_{\text{\tiny H}} = 50\% \text{ ot } U_{\text{\tiny HOM}} = 100 \text{ B}$$

Example of calculation of $\Delta U_{\mbox{\tiny M}}$:

Given:

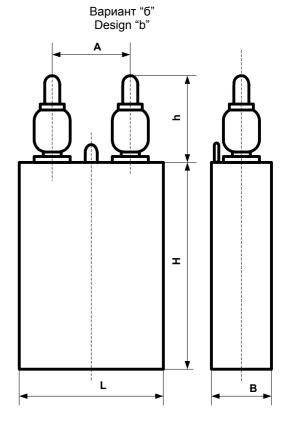
$$F_{\mu} = 32 \text{ kHz}$$
, $\tau_{\mu} = 8.10^{-6} \text{ s}$, $U_t = U_r = 200 \text{ V}$, $C_r = 0.33 \mu\text{F}$

Finding:


$$\Delta U_{\rm H} = 50\%$$
 of $U_{\rm r} = 100 \text{ V}$

Предельно допускаемые амплитуда импульсного тока I_m и скорость изменения напряжения dU/dt Maximum permissible amplitude of pulse current I_m and rate of the voltage change dU/dt

С _{ном} , мкФ С _г , µF	I _m , max, A	dU/dt, max, V/μs
0,010,033	1,65,3	160
0,0470,1	4,59,5	95
0,150,33	10,523	70
0,471,5	1342	28
1,84,7	2770	15
5,622	56220	10


Предназначены для работы в качестве встроенных элементов внутреннего монтажа аппаратуры (в кожухе комплектного изделия) в цепях постоянного и пульсирующего токов.

Конструкция: в прямоугольных герметизированных металлических корпусах.

Designed for use as internally mounded built-in components to operate in DC, AC and ripple current circuits and in pulse mode.

Design: metallic rectangular hermetically sealed housing.

Номинальная емкость 0,0051...10 мкФ Номинальное напряжение 3,0...50 кВ Допускаемое отклонение емкости ±5, ±10; ±20% Тангенс угла потерь при f = 1 кГц <0,01 Сопротивление изоляции . для Cr <u><</u> 0,25 мкФ <u>></u> 20000 МОм Постоянная времени для Cr > 0,25 мкФ ≥ 4000 МОм.мкФ -60...+100°C Интервал рабочих температур Наработка 10000 ч Срок сохраняемости 12 лет УХЛ5.1 и В2.1,5.1 Климатическое исполнение (no FOCT 15150-69) Rated capacitance 0.0051...10 µF Rated voltage 3.0...50 kV Capacitance tolerance ±5; ±10; ±20% Dissipation factor at f = 1kHz <u><</u>0.01 Insulation resistance at Cr ≤ 0.25 µF ≥ 20000 MOhm Time constant at Cr > 0.25 µF ≥ 4000 MOhm.µF Operating temperature range -60...+100°C 10000 hours. Operating time Shelf life 12 years RH 98%, 35°C, Climatic categories 21 days

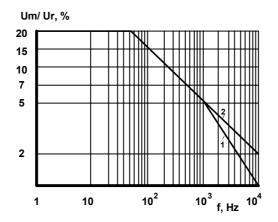
Обозначение при заказе:

Конденсатор К75-15 - 5 кВ - 2 мкФ - ± 20%

Ordering example:

Capacitor K75-15 - 5 kV - 2 μ F - \pm 20%

K75-15 Вариант "а" (лепестковые выводы) / K75-15 Design "a"


U _{ном} Ur, kV	С _{ном} Cr, µF		Macca Mass, g				
OI, KV	Ci, μι	L	В	Н	h	Α	max
	0.1	45	20	- 54		20	120
	0.25	45	35	34		20	180
	0.5		30	74			350
	1	65	30	74		30	520
3	2		60	115			900
	4	85	80	140	24		2100
	6		110				2800
	8		140				3400
	10		180	150			4800
	0.05	45	20	54		20	120
	0.1	45	35	34			180
	0.25		30	74			350
5	0.5	65	30	115			520
	1		60	113		30	900
	2	85	80	140			2100
	4	00	160	150			4200

К75-15 Вариант "б" (резьбовые выводы) / К75-15 Design "b"

U _{ном} Ur, kV	С _{ном} Cr, µF	Размеры Dimensions, mm							
UI, KV	Cr, μr	L	В	Н	h	Α	Mass, g max		
	0.051	65	45	74		30	620		
	0.1	40 115	30	800					
10	0.25		45		52		1400		
	0.5	85	75	140		40	2000		
	1		140				3600		
	0.024	65	60	74		30	800		
	0.051	00	50	115] 30	30	1000		
16	0.1	85	60	140	62	40	1700		
10	0.25	05	120	140		40	3000		
	0.5	140	85	250		80	6300		
	1	150	130	310		90	13000		
	0.024	100	65	115		45	1800		
	0.051	100	85	140		45	2700		
25	0.1	140	00	140	100	80	3800		
	0.25	140	105	270		80	7500		
	0.5	150	130	350		90	15000		
	0.01			115			3200		
40	0.024	140	85	140		80	4200		
40	0.051			220			5700		
	0.1	150	130	220	140	90	9500		
	0.0051			115			3200		
50	0.01	140	85	140		80	4200		
	0.024			240			6000		

Зависимость допускаемой амплитуды переменной составляющей пульсирующего напряжения U_m от частоты f.

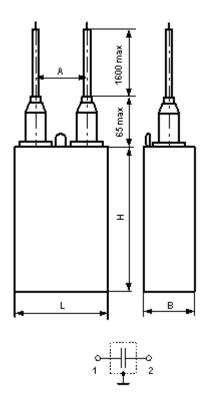
Permissible amplitude of AC component of ripple voltage U_m as a function of frequency f.

- 1 для конденсаторов:
- 0,1 мкФ, 40 кВ; 0,5 мкФ, 25 кВ; 1 мкФ, 16 кВ.
- 1 for capacitors:
- $0.1~\mu F, 40~kV; \\ 0.5~\mu F, 25~kV; \\ 1~\mu F, 16~kV.$

2 - для остальных конденсаторов

2 - for other capacitors

Номинальная емкость


Предназначены для работы в качестве встроенных элементов в цепях постоянного пульсирующего токов и в импульсных режимах с частичной разрядкой емкости.

Конструкция: в прямоугольных герметизирован-ных металлических корпусах.

Designed for use as internally mounded built-in components to operate in DC, AC and ripple current circuits and in pulse mode.

Design: metallic rectangular hermetically sealed housing.

К75-29Б

TIOWWINATIONAL CWINOCID	Ο, 1 1,0 ΙΝΙΚΨ	raica ca
Номинальное напряжение	1640 кВ	Rated vo
Допускаемое отклонение	±10; ±20%	Capacita
емкости		
Тангенс угла потерь при f = 1	<u><</u> 0,01	Dissipation
кГц		kHz
Сопротивление изоляции		Insulation
для Cr ≤ 0,25 мкФ	≥ 20000 МОм	at Cı
Постоянная времени	_	Time con
для Cr > 0,25 мкФ	<u>></u> 4000 МОм·мкФ	at Cı
Интервал рабочих температур	-60+85°C	Operating
		range
Наработка		Operating
при T = -60+85°C	1500 ч	for T
при T = -60+35°C	10000 ч	for T
Срок сохраняемости	12 лет	Shelf life
Климатическое исполнение	УХЛ (98% относит.	Climatic
	влажности при	
	+35°С, 21 сутки)	

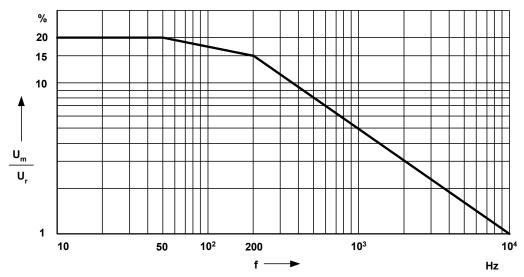
0.1...1.0 мкФ

Rated capacitance Rated voltage Capacitance tolerance	0.11.0 µF 1640 kV ±10; ±20%
Dissipation factor at f = 1 kHz	<u><</u> 0.01
Insulation resistance at Cr ≤ 0.25 µF Time constant	≥ 20000 MOhm
at Cr > 0.25 µF Operating temperature	≥ 4000 MOhm·µF -60+85°C
range Operating time	
for T = -60+85°C	1500 hours
for $T = -60+35^{\circ}C$	10000 hours
Shelf life	12 years
Climatic categories	RH 98%, 35°C,
	21 days

Обозначение при заказе:

Конденсатор K75-29A - 40 кВ - 0,1 мкФ \pm 10%

Ordering example:

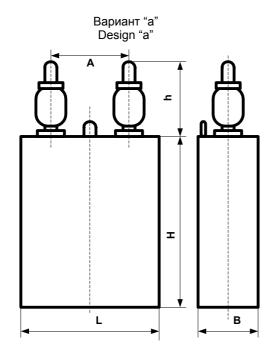

Capacitor K75-29A - 40 kV - 0.1 μ F \pm 10%

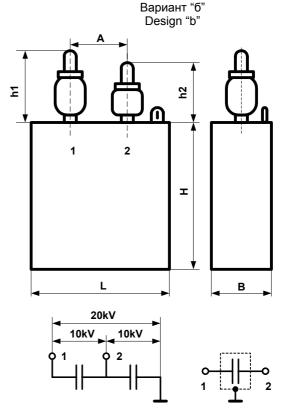
К75-29Б

					Dimer	nsions, m	ım									
		L		В		Н		Α		Mass						
Ur, kV	Cr, μF	Rated value	Limit discre pancy	Rated value	Limit discrep ancy	Rated value	Limit discrepan cy	Rate d valu e	Limit discrepan cy	, kg max						
	0.25		+3	85	+3	110			+3	3						
16	0.5		-1	65	-1	175		80	-1	4.5						
	1.0		±4	130	±4	200			- 1	8.6						
	0.1	140	140	140	140	140	140	140	+3 -1	85	+3 -1	100		70		3.9
25	0.25			130	1.4	135	+2 -3	70		5.7						
	0.5		±4	130	±4	225	-3		±3	9.6						
	1.0	260	±5	150	±5	223		130	ΞS	20						
	0.1	140	±4	130	±4	135		70		5.9						
40	0.25	140	± 4	130	± 4	270		70		11.5						
	0.5	260	±5	150	±5	270		130		23						

Зависимость допустимой амплитуды напряжения переменной составляющей пульсирующего тока U_m от частоты f

Permissible amplitude of AC component of ripple voltage U_m as a function of frequency f




Предназначены для работы в качестве встроенных элементов в цепях постоянного пульсирующего токов и в импульсных режимах с частичной разрядкой емкости.

Конструкция: в прямоугольных герметизированных металлических корпусах.

Designed for use as internally mounded built-in components to operate in DC, AC and ripple current circuits and in pulse mode.

Design: metallic rectangular hermetically sealed housing.

Номинальная емкость	0,11,0 мкФ
Номинальное напряжение	1640 кВ
Допускаемое отклонение емкости	±10; ±20%
Тангенс угла потерь при f = 1 кГц	<u><</u> 0,01
Сопротивление изоляции	
для Cr <u><</u> 0,25 мкФ	<u>></u> 20000 МОм
Постоянная времени	
для Cr > 0,25 мкФ	<u>></u> 4000 МОм.мкФ
Интервал рабочих температур	-60+85°C
Наработка	
при T = -60+85°С	1500 ч
при T = -60+35°C	10000 ч
Срок сохраняемости	12 лет
Климатическое исполнение	УХЛ (98% относит.
	влажности при
	+35°C, 21 сvтки)

Rated capacitance	0.11.0 μF
Rated voltage	1640 kV
Capacitance tolerance	±10; ±20%
Dissipation factor at f = 1 kHz	<u><</u> 0.01
Insulation resistance	
at Cr <u><</u> 0.25 μF	<u>></u> 20000 MOhm
Time constant	
at Cr > 0.25 μF	<u>></u> 4000 MOhm.µF
Operating temperature range	-60+85°C
Operating time	
for T = $-60+85^{\circ}$ C	1500 hours
for T = $-60+35^{\circ}$ C	10000 hours
Shelf life	12 years
Climatic categories	RH 98%, 35°C,
	21 days

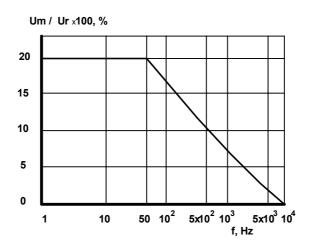
Обозначение при заказе:

Конденсатор K73-29a - 40 кВ - 0,1 мкФ - \pm 10%

Ordering example:

Capacitor K73-29a - 40 kV $- 0.1 \mu F - \pm 10\%$

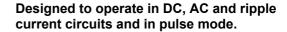
К75-29a Вариант "a" / К75-29a Design "a"


U _{ном} Ur, kV	C _{HOM}			Macca Mass, g			
UI, KV	Cr, μF	L	В	Н	h	Α	max
	0.25		85	110			3000
16	0.5		85	175	62	80	4500
	1.0	140	130	200			8600
	0.1	140	85	110			3900
25	0.25		130	145	100		5700
25	0.5		130	230	100		9600
	1.0	260	260 150	7 230		130	20000
40	0.5	200	130	280	140	130	23000

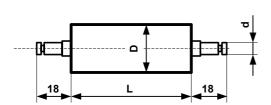
К75-29а Вариант "б" / К75-29а Design "b"

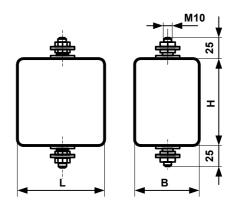
U _{ном} Ur. kV	С _{ном} Cr, µF		Размеры Dimensions, mm							
UI, KV	Ci, μr	L	В	Н	h1	h2	Α	max		
40	0.1	140	130	145	140	62	90	5900		
40	0.25	140	130	280	140	62	80	11500		

Зависимость допустимой амплитуды напряжения переменной составляющей пульсирующего тока U_m от частоты f.


Permissible amplitude of AC component of ripple voltage U_m as a function of frequency f

Предназначены для работы в цепях постоянного, переменного, пульсирующего токов и в импульсных режимах.


Конструкция: в диэлектрических корпусах.


Вариант "a" Design "a"

Design: housing made of polymeric material

Вариант "б" ***** Design "b"

Номинальная емкость	0,0012,2 мкФ	Rated capacitance	0.0012.2 μF
Номинальное напряжение	2,5100 кВ	Rated voltage	2.5100 kV
Допускаемое отклонение емкости	±5; ±10; ±20%	Capacitance tolerance	±5; ±10; ±20%
Тангенс угла потерь при f = 1 кГц для Cr ≤ 0,22 мкФ для Cr > 0,22 мкФ	≤0,0025 ≤0,005	Dissipation factor at f=1 kHz at Cr \leq 0,22 μ F at Cr > 0,22 μ F	≤0.0025 ≤0.005
Сопротивление изоляции для Cr ≤ 0,22 мкФ	<u>></u> 15000 МОм	Insulation resistance at Cr ≤ 0.22 μF	≥ 15000 MOhm
Постоянная времени для Cr > 0,22 мкФ	<u>></u> 1000 МОм.мкФ	Time constant at Cr > 0.22 μF	≥ 1000 MOhm.µF
Интервал рабочих температур	-60+85°C	Operating temperature range	-60+85°C
Наработка	2000 ч	Operating time	2000 hours
Срок сохраняемости	15 лет	Shelf life	15 years
Климатическое исполнение	УХЛ (98% относит. влажности при 35°С, 21 сутки)	Climatic categories	RH 98%, 35°C, 21 days

Обозначение при заказе:

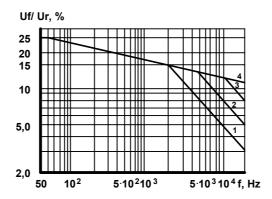
Конденсатор K75-54 - 4 кВ - 0,1 мкФ - \pm 20%

Ordering example:

Capacitor K75-54 - 4 kV - 0.1 μ F - \pm 20%

Вариант "a" / Design "a"

Ur, kV	Cr, μF	D, mm	L, mm	d, mm	Mass, g max
	0.010	20	56		60
	0.022			2.5	90
2.5	0.047	25		2.5	130
2.5	0.10	32	90		180
	0.22	40		4	260
	0.47	45		4	300
	0.0047	20	56		60
	0.010			2.5	90
	0.022	25		2.5	130
4.0	0.047	32	90		180
4.0	0.10	40		4	260
	0.22	45			300
	0.47	45	140	4	460
	1.0	63	140		840
	0.0022	20	56		60
	0.0047	20		2.5	90
	0.010	25		2.5	130
6.3	0.022	32	90		180
0.3	0.047	40			260
	0.10	45		4	300
	0.22	40	140	4	460
	0.47	63	140		840
	0.0010	20	56		60
	0.0022	20		0.5	90
	0.0047	25		2.5	130
10	0.010	32	90		180
	0.022	40			260
	0.047	45		4	300
	0.10	63	140		840
	0.0010	20			90
	0.0022	25	00	2.5	130
40	0.0047	32	90		180
16	0.010	40			260
	0.022	45	140	4	460
	0.047	63	140		840


Вариант "б" / Design "b"

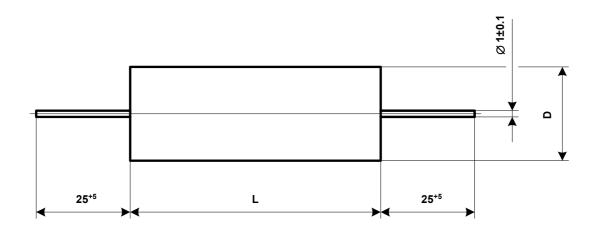
Ur, kV	Cr, μF	L, mm	B, mm	H, mm	Mass, g max
4.0	2.2			140	3500
6.3	1.0			140	3500
10	0.22	150	90	90	2400
10	0.47	150	90	140	3500
16	0.10			90	2400
10	0.22			140	3500
	0.010	100	71	71	1000
25	0.022	100	7.1	100	1500
25	0.047	150	90	110	3000
	0.10	150	90	180	4500
	0.0047	100	71	71	1000
40	0.010	100	7.1	100	1500
40	0.022			110	3000
	0.047		00	180	4500
	0.0047	150		110	3000
63	0.010	150	90	140	3500
	0.022			220	5400
100	0.0047			220	5400

Зависимость допускаемой амплитуды переменного синусоидального напряжения или амплитуды переменной синусоидальной составляющей пульсирующего напряжения Uf от частоты f

Permissible amplitude of AC sinusoidal voltage or amplitude of AC sinusoidal component of ripple voltage

Uf as a function of frequency f

- **1)** 4,0 κB (0,47; 1,0; 2,2 мκΦ); 6,3 κB (0,47; 1,0 мκΦ); 10 κB (0,22; 0,47 мκΦ); 16 κB (0,047; 0,1; 0,22 мκΦ); 25 κB (0,047; 0,1 мκΦ); 40 κB (0,022; 0,047 мκΦ); 63 κB (0,047; 0,01; 0,022 мκΦ); 100 κB (0,0047 мκΦ);
- **2)** 2,5 κB (0,47 мκΦ); 4,0 κB (0,22 мκΦ); 6,3 κB (0,1; 0,22 мκΦ); 10 κB (0,022; 0,047; 0,1 мκΦ); 16 κB (0,01; 0,022 мκΦ); 25 κB (0,01; 0,022 мκΦ); 40 κB (0,0047; 0,01 мκΦ);
- **3)** 2,5 κB (0,1; 0,22 мκΦ); 4,0 κB (0,047; 0,1 мκΦ); 6,3 κB (0,022; 0,047 мκΦ); 10 κB (0,01 мκΦ); 16 κB (0,0022; 0,0047 мκΦ);
- **4)** 2,5 κB (0,01; 0,022; 0,047 мκΦ); 4,0 κB (0,0047; 0,01; 0,022 мκΦ); 6,3 κB (0,0022; 0,0047; 0,01 мκΦ); 10 κB (0,001; 0,0022; 0,0047 мκΦ); 16 κB (0,001 мκΦ);
- * в настоящее время не выпускается
 - is not produced at present


- 1) 4.0 kV (0.47; 1.0; 2.2 μ F); 6.3 kV (0.47; 1.0 μ F); 10 kV (0.22; 0.47 μ F); 16 kV (0.047; 0.1; 0.22 μ F); 25 kV (0.047; 0.1 μ F); 40 kV (0.022; 0.047 μ F); 63 kV (0.047; 0.01; 0.022 μ F); 100 kV (0.0047 μ F);
- 2) 2.5 kV (0.47 μ F); 4.0 kV (0.22 μ F); 6.3 kV (0.1; 0.22 μ F); 10 kV (0.022; 0.047; 0.1 μ F); 16 kV (0.01; 0.022 μ F); 25 kV (0.01; 0.022 μ F); 40 kV (0.0047; 0.01 μ F);
- **3)** 2.5 kV (0.1; 0.22 μF); 4.0 kV (0.047; 0.1 μF); 6.3 kV (0.022; 0.047 μF); 10 kV (0.01 μF); 16 kV (0.0022; 0.0047 μF);
- 4) 2.5 kV (0.01; 0.022; 0.047 μF);
 4.0 kV (0.0047; 0.01; 0.022 μF);
 6.3 kV (0.0022; 0.0047; 0.01 μF);
 10 kV (0.001; 0.0022; 0.0047 μF);
 16 kV (0.001 μF);

Предназначены для работы в импульсных режимах.

Конструкция: в цилиндрических корпусах из полимерных материалов.

Designed to operate in pulse mode.

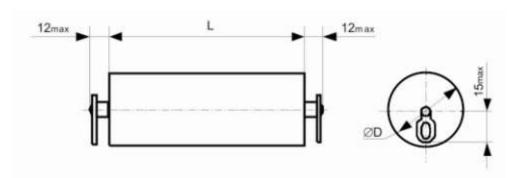
Design: cylindrical housing made of polymeric materials.

Номинальная емкость	2,010 мкФ	Rated capacitance	2.010 μF
Номинальное напряжение (в интервале температур -60°С+50°С)	1,0 кВ	Rated voltage (temperature range -60°C+50°C)	1.0 kV
Допускаемое отклонение емкости	<u>+</u> 10%	Capacitance tolerance	<u>+</u> 10%
Тангенс угла потерь	<u><</u> 0,01	Dissipation factor	<u>≤</u> 0.01
Постоянная времени	<u>></u> 500 МОм.мкФ	Time constant	<u>></u> 500 MOhm.µF
Интервал рабочих температур	-60+70°C	Operating temperature range	-60+70°C
Частота следования импульсов	<u><</u> 5,0 Гц	Pulse repetition frequency	<u><</u> 5.0 Hz
Амплитуда тока разрядки	75400 A	Discharge current amplitude	75400 A
Наработка	10 ⁶ имп.	Operating time	10 ⁶ imp.
Срок сохраняемости	20 лет	Shelf life	20 years

		D,	D, mm		L max, mm		
Ur, V	Cr, μF	Rated value	Limit discrepancy	Rated value	Limit discrepancy	Mass, g max	
	2	16	±0.55	71	±2.3	35	
	4	18	±0.65				50
1000	6	21		100	±2.7	65	
	8	24		±0.05	100	100	± ∠. 1
	10	26				100	

Обозначение при заказе:

Конденсатор K75-59 - 1 кВ -6 мк Φ - \pm 10%


Ordering example:

Capacitor K75-59 - 1 kV $- 6 \mu F - \pm 10\%$

Технические условия: АЖЯР.673641.000 ТУ

Предназначены для применения в цепях постоянного тока и в импульсных режимах с частичной разрядкой емкости в специальной аппаратуре с малым временем функционирования.

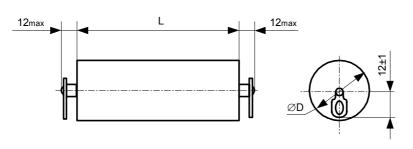
Конструкция: уплотненные неизолированные.

Номинальная емкость, мкФ	0,22 1,0
Номинальное напряжение, кВ	4,0; 6,3; 12,5
Допускаемые отклонения емкости,%	±5; ±10
Тангенс угла потерь, tgδ, не более	0,01
Сопротивление изоляции, не менее, МОм (для С _{ном} ≤ 0,22 мкФ)	12 000
Постоянная времени, не менее, МОм·мкФ (для С _{ном} >0,22 мкФ)	4000
Интервал рабочих температур, °C	-60 +8 5
Климатическое исполнение	УХЛ
Наработка, ч	250
Срок сохраняемости, не менее, лет	20

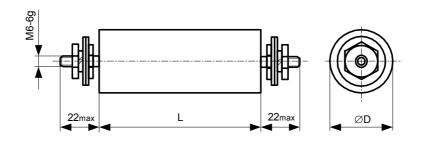
Ином, В	Uном, В Сном, мкФ		D, мм		L, mm		
CHOW, D	OHOM, MK	Номин.	Пред. откл.	Номин.	Пред. откл.	не более	
0,47	4.0	32				140	
1,0	4,0	42		90	±1,75	270	
0,22		32			5 ±1,75	140	
0,47	6,3	42	±1,95			300	
1,0		50				500	
0,1	10.5	32		140	±2,0	220	
0,22	12,5	45				400	

Обозначение при заказе: Конденсатор К75-62-4 кВ-0,47 мкФ±10% АЖЯР. 673641.000 ТУ

Предназначены для работы в цепях постоянного, переменного, пульсирующего токов и в импульсных режимах.


Могут применяться взамен К75-15, К75-22, К75-29, К75-47.

Конструкция: в цилиндрических корпусах из полимерных материалов с разнонаправленными выводами.


Designed to operate in DC, AC and ripple current circuits and in pulse mode.

Can be used instead of K75-15, K75-22, K75-29, K75-47.

Design: cylindrical housing made of polymeric materials. Axial terminals.

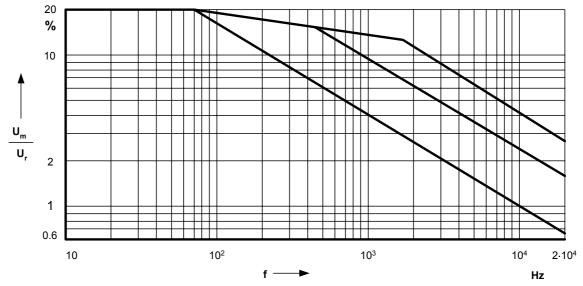
Bариант "a" Design "a"

Bариант "б" Design "b"

Номинальная емкость	0,0122 мкФ	Rated capacitance	0.0122 μF
Номинальное напряжение	2,540 кВ	Rated voltage	2.540 kV
Допускаемое отклонение емкости	<u>+</u> 5; <u>+</u> 10; <u>+</u> 20%	Capacitance tolerance	<u>+</u> 5; <u>+</u> 10; <u>+</u> 20%
Тангенс угла потерь при f = 1 кГц	<u><</u> 0,01	Dissipation factor at f=1 kHz	<u>≤</u> 0.01
Сопротивление изоляции для Cr ≤ 0,22 мкФ	<u>></u> 1200 МОм	Insulation resistance at Cr ≤ 0.22 µF	<u>></u> 1200 MOhm
Постоянная времени для Cr > 0,22 мкФ	<u>></u> 4000 МОм.мкФ	Time constant at Cr > 0.22 μF	<u>></u> 4000 MOhm.µF
Интервал рабочих температур	-60+85°C	Operating temperature range	-60+85°C
Наработка К75-63 (+85°C) К75-63 (+70°C) Срок сохраняемости	2000 ч 3000 ч 20 лет	Operating time K75-63 (+85°C) K75-63 (+70°C) Shelf life	2000 hours 3000 hours 20 years

Обозначение при заказе:

Конденсатор K75-63 – 4 кВ – 0,1 мк Φ - \pm 10%

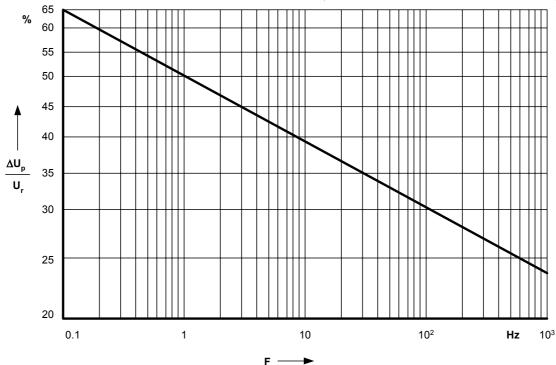

Ordering example:

Capacitor K75-63 – 4 kV – 0.1 μ F - \pm 10%

		D	D, mm		L, mm					
Ur, V	Cr, μF	Rated	Limit	Rated	Limit	Mass, g max	Design			
	0.000	value	discrepancy	value	discrepancy	00				
	0.022	16	<u>+</u> 1.35	30	<u>+</u> 1.65	20				
	0.047		_	48	<u>+</u> 1.95	30				
	0.10	22	<u>+</u> 1.65		_	50	- (-)			
	0.22	20	_	00	.0.7	60	a (a)			
2.5	0.47	32	14.05	90	<u>+</u> 2.7	160				
	1.0	42	<u>+</u> 1.95	110	.0.45	230				
	2.2	50		140	<u>+</u> 3.15	500				
	4.7	56	<u>+</u> 2.3	280	14.05	1200	5 (h)			
	10.0 22.0	75 95	<u>+</u> 2.7	200	<u>+</u> 4.05	2100 3300	ნ (b)			
	0.010	95	<u>+</u> 2.1	30	+1.65	20				
	0.010	16	<u>+</u> 1.35	30	<u>+</u> 1.05		-			
		22		48	<u>+</u> 1.95	30 50	-			
	0.047 0.10	20	<u>+</u> 1.65			80	-			
	0.10	28	<u>+</u> 1.00	90	+2.7	120	a (a)			
4.0	0.22	40		90	<u>+</u> 2.1	230	-			
	1.0	42	<u>+</u> 1.95			350				
	2.2	60		140	<u>+</u> 3.15	700	-			
	4.7	63	<u>+</u> 2.3			1500				
	10.0	95	+2.7	280	<u>+</u> 4.05	3300	б (b)			
	0.010	20	<u>+</u> 1.65	48	<u>+</u> 1.95	40				
	0.022	16	<u>+</u> 1.35		<u>·</u> 1.33	50	1			
	0.047	22	_			80	a (a)			
	0.10	30	<u>+</u> 1.65	90	<u>+</u> 2.7	140				
6.3	0.22					250	u (u)			
0.0	0.47	45	<u>+</u> 1.95			400				
	1.0			140	<u>+</u> 3.15	800				
	2.2	63	<u>+</u> 2.3			1500	_			
	4.7	90	+2.7	280	<u>+</u> 4.05	2900	б (b)			
	0.010	16	<u>+</u> 1.35			50				
	0.022	24	+1.65			90	1			
	0.047	32	_	90	90	90	90	<u>+</u> 2.7	160	a (a)
40	0.10	45	.4.05			250	` ′			
10	0.22	48	<u>+</u> 1.95	140	+3.15	450				
	0.47	50			_	1000				
	1.0	67	<u>+</u> 2.3	280	<u>+</u> 4.05	1700	б (b)			
	2.2	85	<u>+</u> 2.7			2500	(-)			
	0.010	20	±1 65			90				
	0.022	28	<u>+</u> 1.65	140	<u>+</u> 3.15	190	a (a)			
	0.047	40	<u>+</u> 1.95	140	<u>+</u> 3.10	300	a (a)			
16	0.10	56				650				
	0.22		<u>+</u> 2.3			1200				
	0.47	75		280	<u>+</u> 4.05	2100	б (b)			
	1.0	95	<u>+</u> 2.7			3300				
	0.010	32	<u>+</u> 1.95			230				
	0.022	45	<u>·</u> 1.00	140	<u>+</u> 3.15	400	a (a)			
25	0.047	63	<u>+</u> 2.3			800				
	0.10	60				1400				
	0.22	85	<u>+</u> 2.7			2500				
	0.47	105		000		4100				
	0.010	40	<u>+</u> 1.95	280	<u>+</u> 4.05	650	б (b)			
40	0.022	50				1000				
	0.047	67	<u>+</u> 2.3			1700				
	0.1	85	<u>+</u> 2.7			2500				

Зависимость допускаемой амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_m от частоты f

Permissible amplitude of AC sinusoidal component of ripple voltage U_m as a function of frequency f


- 16; 25; 40 κB;
 2,5 κB (2,2; 4,7; 10; 22 мκΦ);
 4 κB (2,2; 4,7; 10 мκΦ);
 6,3 κB (1; 2,2; 4,7 мκΦ);
 10 κB (0,22; 0,47; 1,0; 2,2 мκΦ);
- 2) 2,5 κB (0,47; 1,0 мκΦ); 4 κB (0,1; 0,22; 0,47; 1,0 мκΦ); 6,3 κB (0,047; 0,10; 0,22; 0,47 мκΦ); 10 κB (0,022; 0,047; 0,10 мκΦ);
- 3) 2,5 κB (0,022; 0,047; 0,10; 0,22 мκΦ);
 4 κB (0,01; 0,022; 0,047 мκΦ);
 6,3 κB (0,01; 0,022 мκΦ);
 10 κB (0,01 мκΦ).
- 16; 25; 40 kV;
 2.5 kV (2.2; 4.7; 10; 22 μF);
 4 kV (2.2; 4.7; 10 μF);
 6.3 kV (1; 2.2; 4.7 μF);
 10 kV (0.22; 0.47; 1.0; 2.2 μF);
- 2) 2.5 kV (0.47; 1.0 μF); 4 kV (0.1; 0.22; 0.47; 1.0 μF); 6.3 kV (0.047; 0.10; 0.22; 0.47 μF); 10 kV (0.022; 0.047; 0.10 μF);
- 3) 2.5 kV (0.022; 0.047; 0.10; 0.22 μ F); 4 kV (0.01; 0.022; 0.047 μ F); 6.3 kV (0.01; 0.022 μ F); 10 kV (0.01 μ F).

Допускаемый размах импульсного напряжения ΔU и не должен превышать значений, определяемых по рисунку ниже.

Peak-to-peak pulse voltage ΔU_p must not exceed the values defined from the Figure below.

Зависимость допускаемого размаха импульсного напряжения ΔU_и от частоты следования импульсов F_и

Permissible amplitude of peak-to-peak pulse voltage U_p as a function of pulse repetition rate F_p

При этом допускаемые сочетания $\Delta U_u \cdot I_u \cdot F_u$ не должны превышать значений, определяемых по формуле:

$$K_{\tau} \cdot K_{p} \cdot \Delta U_{u} \cdot I_{u} \cdot F_{u} \leq \Pi$$

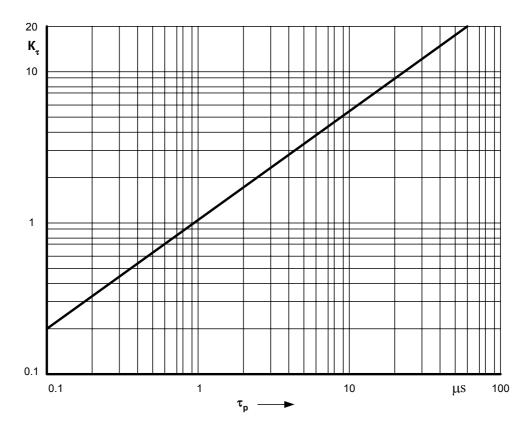
- параметр, характеризующий конденсатор по допустимой мощности потерь при где П – естественном конвективном теплообмене всей боковой поверхности и определяемый по таблице:
 - коэффициент, учитывающий длительность разрядки конденсатора, определяемый в зависимости от длительности импульса тока разрядки по рисунку;
 - К_р коэффициент, учитывающий режим разрядки конденсатора, равный:
 - 0,8 для апериодических и колебательных режимов с одной полуволной тока;
 - 1,0 для импульсных режимов с глубиной разрядки (относительное падение напряжения на конденсаторе) до 20%;
 - значениям, определяемым по рисунку, для колебательного затухающего режима разрядки;
 - I_{u} амплитуда тока разрядки конденсатора, A;
 - F_и частота следования импульсов.

Permissible combinations of $\Delta U_p \cdot I_p \cdot F_p$ must not exceed the values calculated from the following formula:

$$K_{\tau} \cdot K_{p} \cdot \Delta U_{p} \cdot I_{p} \cdot F_{p} \leq P$$

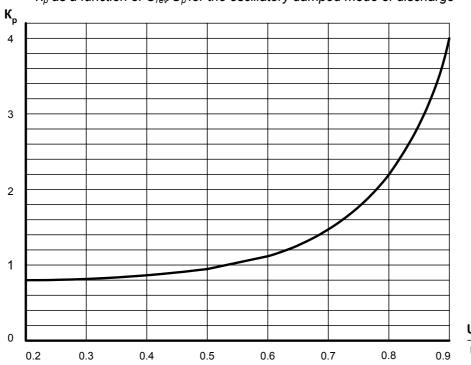
where

- P a parameter specifying loss power tolerance at a natural convective heat transfer along the lateral surface that is given in the table.
- K_{τ} a coefficient that allows for the capacitor discharge time. It depends on the duration of the discharge current pulse and is determined from the Figure below


 K_0 - a coefficient that allows for the discharge mode of the capacitor and is equal to:

- 0.8 for the aperiodic and oscillatory modes with one half-wave of the current;
- 1.0 for the pulse mode with the discharge depths (voltage derating ratio) up to 20%;
- values measured from the figure for oscillatory damping mode of discharge
 - I_p discharge current amplitude of the capacitor F_p pulse repetition rate

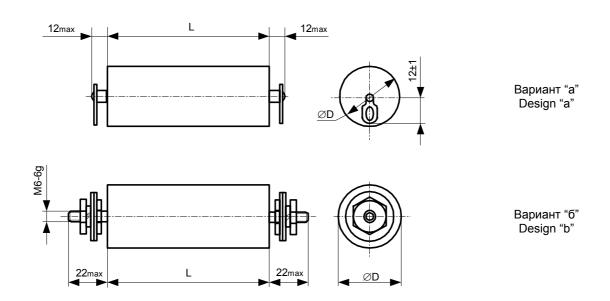
Cr, μF	P ⋅ 10 ⁻⁶ , VA/c, at U _r , kV						
2.5	2.5	4.7	6.3	10	16	25	40
0.010	-	4.5	9	12	17	32	55
0.022	4.5	7	12	17	25	40	60
0.047	7	10	16	22	36	50	75
0.10	10	15	21	30	45	65	130
0.22	16	20	30	42	60	75	-
0.47	22	25	40	60	75	150	-
1.0	27	40	50	70	140	-	-
2.2	46	48	70	75	-	-	-
4.7	60	70	75	-	_	-	-
10	70	75	_	_	_	-	-
22	140	-	_	_	_	-	_


Зависимость K_{τ} от длительности импульса тока разрядки $\tau_{\text{и}}$ (на уровне 0,5 $I_{\text{и}}$)

 K_{τ} as a function of the discharge current pulse duration τ_p (at a level of 0.5 I_p)

Зависимость K_p от $U_{\text{обp}}/U_{\text{и}}$ для колебательного затухающего режима разрядки

 K_p as a function of U_{rev}/U_p for the oscillatory damped mode of discharge



Предназначены для работы в цепях постоянного, переменного, пульсирующего токов и в импульсных режимах.

Конструкция: в цилиндрических корпусах из полимерных материалов с разнонаправленными выводами.

Designed to operate in DC, AC and ripple current circuits and in pulse mode.

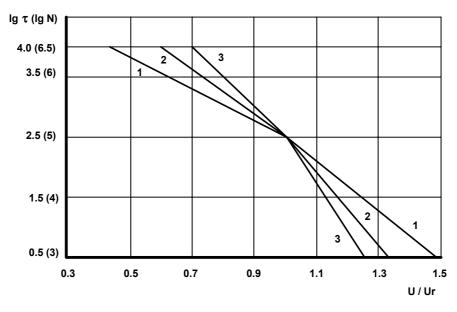
Design: cylindrical housing made of polymeric materials. Axial terminals.

Номинальная емкость	2,0200 мкФ	Rated capacitance	2.0200 μF
Номинальное напряжение	1,06,3 кВ	Rated voltage	1.06.3 kV
Допускаемое отклонение емкости	±10%	Capacitance tolerance	±10%
Тангенс угла потерь при f = 1 кГц	<u><</u> 0,016	Dissipation factor at f = 1 kHz	<u><</u> 0.016
Постоянная времени	<u>></u> 500 МОм.мкФ	Time constant	≥ 500 MOhm.µF
Интервал рабочих температур	-60+70°C	Operating temperature range	-60+70°C
Частота следования импульсов для $C_r \le 10$ мкФ для $C_r > 10$ мкФ Амплитуда тока разрядки	0,110 Гц 0,11,0 Гц 755000 А	Pulse repetition frequency for $C_r \le 10 \ \mu F$ for $C_r > 10 \ \mu F$ Discharge current amplitude	0.110 Hz 0.11.0 Hz 755000 A
Срок сохраняемости	10 лет	Shelf life	10 years

Обозначение при заказе:

Конденсатор К75-81б - 4 кВ - 40 мк Φ - $\pm 10\%$

Ordering example:


Capacitor K75-81b $- 4 \text{ kV} - 40 \mu\text{F} - \pm 10\%$

Ur, V	Cr, mF	D max, mm	L max, mm	Mass, g max	Design
	2	16		30	
	4	22		50	0 (0)
	6	28	75	75	a (a)
	8	32	75	100	
	10	36		125	
1000	20	48		210	
	40	45		340	
	60	53	140	470	а,б (a,b)
	80	63		660	a,o (a,b)
	100	67		750	
	200	100		1570	
				I I	
	2	21		50	
	4	30		90	a (a)
	6	36	75	125	()
	8	40		150	
	10	45		180	
1600	20	42		300	
	40	60		600	
	60	71	140	820	а,б (а,ь)
	80	80		1070	, , ,
	100	90		1350	
	200	130		2700	
	2	24		55	
	4	33	75	100	
	6	38		140	a
	8	44		170	
0000	10	34		190	
2000	20	53		450	
	40	70		820	
	60	88	140	1260	а,б (a,b)
	80	100		1630	
	100	110		2010	
	200	150		3620	
	2	32	7.5	90	2 (2)
	4	42	75	160	a (a)
	6	35		190	
	8	40		250	
	10	44		310	
2500	20	60		560	
	40	80	140	1070	а,б (a,b)
	60	98		1600	
			-		
	80	112		2050	
	100	125		2610	, .
	2	34	75	105	a (a)
	4	33		170	
	6	39		240	
	8	43		300	
3000	10	48		370	
3000	20	63	140	640	а,б (а,b)
	40	90	1	1350	,
	60	108		1900	
	80	125	1	2610	
	100	140		3300	
	2	40	75	150	a (a)
			10		a (a)
	4	38		230	
	6	45	-	330	
4000	8	52		440	.
- 	10	58	140	540	а,б (a,b)
	20	85		1200	
	40	115		2160	

Ur, V	Cr, mF	D max, mm	L max, mm	Mass, g max	Design
	2	34	_	190	
	4	47		350	
	6	58		540	
5000	8	65	140	690	а,б (а,b)
3000	10	72	140	840	a,0 (a,0)
	20	102		1710	
	40	145		3470	
	60	175		5010	
	2	38		230	
	4	52		440	
	6	62		620	
6300	8	71	140	820	а,б (а,b)
6300	10	79	140	1010	a,0 (a,0)
	20	120		2360	
	40	165		4500	
	60	200		6630	

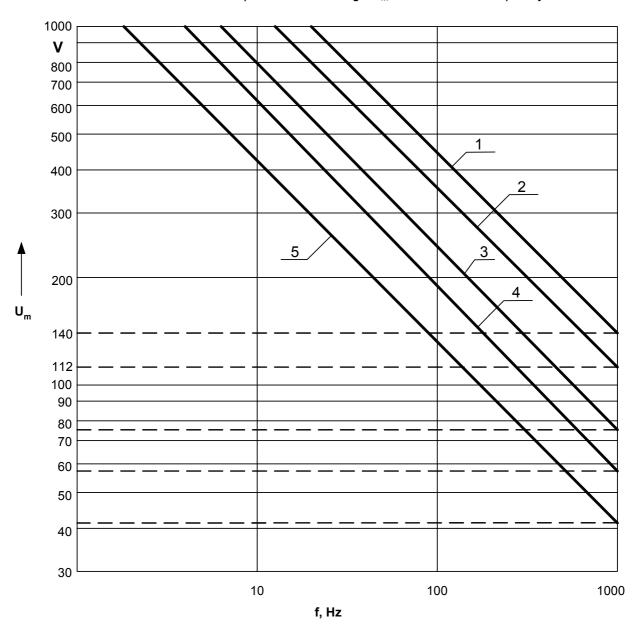
Зависимость наработки от напряжения при T=40°C

Minimum operating time as a function of voltage at T=40°C

τ - в часах; N - количество импульсов

 $\boldsymbol{\tau}$ - in hours; N - number of pulses

1) Ur = 1000 B; 1600 B 2) Ur = 2000 B; 2500 B; 3000 B 3) Ur = 4000 B; 5000 B; 6300 B


1) Ur = 1000 V; 1600 V 2) Ur = 2000 V; 2500 V; 3000 V 3) Ur = 4000 V; 5000 V; 6300 V

Амплитуда тока разрядки, А Max. discharge current amplitude, A

IIm V	Cr, μF									
Ur, V	2	4	6	8	10	20	40	60	80	100
1000	75	150	200	300	400	500	600	1000	1000	2000
1600	100	250	400	500	600	500	1000	2000	2000	2000
2000	100	300	300	500	300	500	1000	2000	2000	2000
2500	100	200	200	200	300	500	1000	2000	3000	4000
3000	300	300	400	400	500	1000	1000	2000	3000	4000
4000	200	200	300	300	400	1000	2000	4000		
5000	100	200	300	400	500	1000	2000	4000		
6300	300	700	1000	1300	1700	2000	3000	5000		

Зависимость допускаемой амплитуды переменной синусоидальной составляющей пульсирующего напряжения U_m от частоты f

Permissible maximum amplitude of AC voltage U_m as a function of frequency f

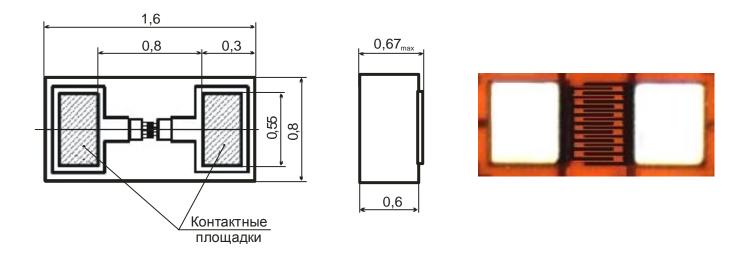
- 1. $2 \mu F \times 1 kV$; 2; $4 \mu F \times 1.6 kV$; 20 $\mu F \times 6.3 kV$;
- 2. 4; 6; 8 μ F \times 1 kV; 6; 8; 10 μ F \times 1.6 kV; 20 μ F \times 2.5 kV; 20 μ F \times 3 kV; 20; 40 μ F \times 4 kV; 20; 40 μ F \times 5 kV; 40; 60 μ F \times 6.3 kV;
- 3. 10; 20; 40 μ F \times 1 kV; 20; 40; 60 μ F \times 1.6 kV; 20; 40; 60 μ F \times 2 kV; 40; 60 μ F \times 2.5 kV; 40; 60; 80 μ F \times 3 kV; 60 μ F \times 4 kV; 60 μ F \times 5 kV;
- 4. 60; 80; 100 μ F \times 1 kV; 80; 100 μ F \times 1.6 kV; 80; 100 μ F \times 2 kV; 80; 100 μ F \times 2.5 kV; 100 μ F \times 3 kV;
- 5. 200 μF.

Вариконды представляют собой конденсаторы, ёмкость которых управляется приложенным напряжением.

Тонкоплёночные двухэлектродные вариконды (КН1-8) и трехэлектродные вариконды (КН1-9) на основе слоёв сегнетоэлектрического материала предназначены для использования в устройствах, работающих в СВЧ-диапазоне (до 4 ГГц), в первую очередь для фазовращателей активных фазированных антенных (АФАР). решеток Емкость таких конденсаторов посредством изменяется заданных пределах приложения ним постоянного управляющего напряжения.

Применение варикондов взамен ферритовых элементов, полупроводниковых приборов (варикапов) или элементов на основе микроэлектромеханических структур даёт эффект повышения быстродействия, значительного снижения энергопотребления (за счет исключения токопотребляющих компонентов) и, как следствие, — улучшение массогабаритных характеристик и снижение стоимости.

Вариконды могут использоваться и при разработках управляемых фильтров и линий задержки.

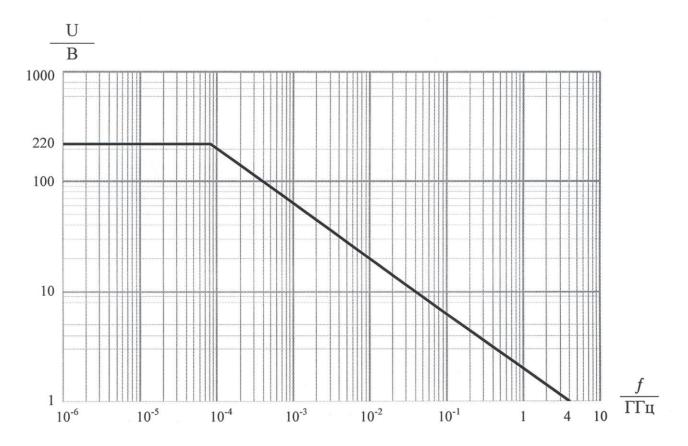


Вариконды							
Тип	Номинальное напряжение, В	Номинальная емкость, пФ	Коэффициент управления, К _у , не менее	Добротность, не менее, Q			
KH1-8	220	1,0; 2,2; 3,3	1.8	25			
КН1-9 НОВАЯ РАЗРАБОТКА	220	1,0; 2,2; 3,3; 4,7	2,0	40			

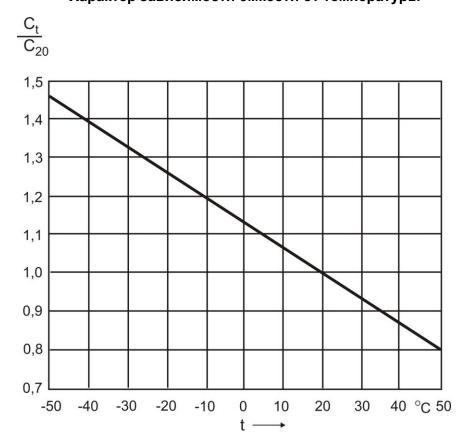
Технические условия: АЖЯР.673553.002 ТУ

Предназначены для применения в составе герметизированной аппаратуры или в герметизированных блоках в качестве управляемого емкостного элемента фазовращателей для активных фазированных антенных решеток в режимах переменного и пульсирующего напряжения на частотах до 4 ГГц.

Конструкция: безвыводные, незащищенные.



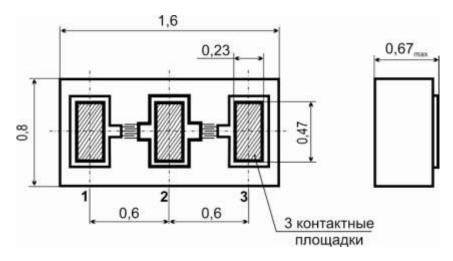
Номинальное напряжение, В	220
Номинальная емкость, пФ	1,0; 2,2; 3,3
Допускаемое отклонение емкости	±0,5 пФ
Коэффициент управления К _у , не менее	1,8
Тангенс угла потерь, $tg\delta$, на частоте 1 МГц, не более	0,025
Сопротивление изоляции между контактными площадками, не менее, МОм	300
Добротность на частоте 4 ГГц, не менее	25
Интервал рабочих температур, °С	-50 +50
Срок сохраняемости, лет	25
Масса, не более, г	0,02


Обозначение при заказе: Вариконд КН1-8-1 пФ АЖЯР.673553.002 ТУ Вариконд КН1-8-2,2 пФ-А АЖЯР.673553.002 ТУ

Буква «А» для варикондов, поставляемых для автоматизированной сборки аппаратуры.

Зависимость допускаемой амплитуды переменного синусоидального напряжения и переменной синусоидальной составляющей пульсирующего напряжения от частоты

Характер зависимости емкости от температуры



Технические условия: АЖЯР.673553.003 ТУ

Предназначены для применения в составе герметизированной аппаратуры или в герметизированных блоках в качестве управляемого емкостного элемента фазовращателей для активных фазированных антенных решеток в режимах переменного и пульсирующего напряжения на частотах до 4 ГГц.

Вариконды изготавливают в едином исполнении, пригодном как для ручной, так и для автоматизированной сборки аппаратуры

Конструкция: безвыводные, незащищенные.

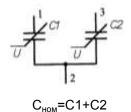
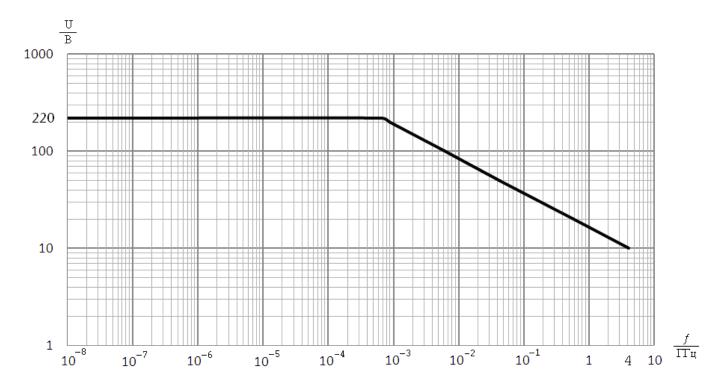
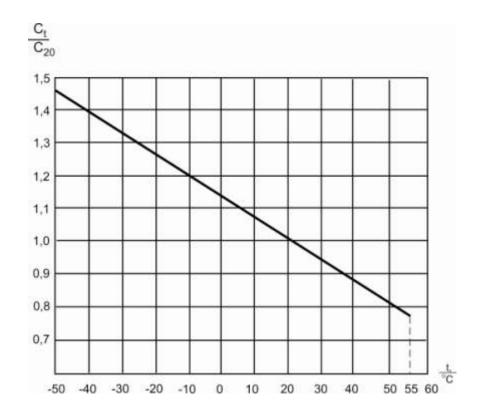



Схема электрическая принципиальная


Номинальное напряжение, В	220
Номинальная емкость, пФ	1,0; 2,2; 3,3; 4,7
Допускаемое отклонение емкости, пФ	±0,5
Коэффициент управления К _у , не менее	2,0
Тангенс угла потерь, $tg\delta$, на частоте 1 МГц, не более	0,025
Сопротивление изоляции между контактными площадками, не менее, МОм	300
Добротность на частоте 4 ГГц, не менее	40
Интервал рабочих температур, ^о С	-50 +55
Масса, не более, мг	10

Обозначение при заказе: Вариконд КН1-9 -1 пФ АЖЯР.673553.003 ТУ

Зависимость допускаемой амплитуды переменного синусоидального напряжения и переменной синусоидальной составляющей пульсирующего напряжения от частоты

Характер зависимости емкости от температуры

Основные характеристики керамических проходных конденсаторов и помехоподавляющих фильтров, выпускаемых ОАО «НИИ «Гириконд»

Тип изделия	Конструкция и тип изделия	Диапазон частот помехо- подавлен ия	Группы ТСЕ	Номинальное напряжение, В	Номиналь- ный ток, А	Номинальная емкость		
			Конденс	аторы				
K10-81	Шайбовые многослойные		МП0	100, 160, 250, 350500, 750, 1000		4,7 пФ0,1 мкФ		
Новая разработка	помехо-подавляющие	10 кГц 10,0 ГГц	H20,H50	50, 100, 160, 250, 350, 500	15; 25	470 пФ3,3 мкФ		
	проходные конденсаторы		H90	50, 100, 250		0,01510,0 мкФ		
			Филь	тры				
Б24, Б24-1	Б24 трубчатые, Рі-тип Б24-1	0,7 МГц 10,0 ГГц	M750, M1500, M2200, M3300, H30, H50	250	10	432700 пФ		
	трубчатые, С-тип		H70, H90	100	5	330010 000 пФ		
F05	Б25-3 металлический корпус, С-тип Б25 Б25-4 малогабаритный металлический корпус, С-тип	металлический корпус, С-тип	металлический корпус, С-тип	40	МП0 H20, H50 H90	80, 160, 250, 500 50, 160, 250, 500 50, 250	10; 25	68 пФ0,082 мкФ 3300 пФ2,2 мкФ 0,01510,0 мкФ
D23		10 кГц 10,0 ГГц	МП0	80, 160, 250	10	4,71500 пФ		
			H20, H50	50, 100, 250		470 пФ0,1 мкФ		
			H90	50, 100, 250		0,0150,33 мкФ		
	Б26-1		МП0	100, 160, 250, 350, 500, 750, 1000	10; 15; 25	47 пФ0,1 мкФ		
	металлический корпус, С-тип		H20, H50	32, 50, 100, 160, 250, 350, 500		470 пФ3,3 мкФ		
			H90	32, 50, 100, 250		0,01522,0 мкФ		
	Б26-2	40.5	МП0	100, 160, 250, 350, 500, 750, 1000	10; 15	47 пФ0,1 мкФ		
Б26	металлический корпус, LC-тип	10 кГц 10,0 ГГц	H20, H50	32, 50, 100, 160, 250, 350, 500	10, 15	470 пФ3,3 мкФ		
			H90	32, 50, 100, 250		0,01522,0 мкФ		
	Б26-3		МП0	100, 160, 250, 350, 500, 1000		680 пФ0,22 мкФ		
	металлический корпус, Рі-тип		H20, H50	50, 100, 160, 250, 350	15, 25	6800 пФ6,8 мкФ		
			H90	50, 100, 250		0,1522,0 мкФ		

Конденсаторы К10-81 - коаксиальные многослойные монолитные проходные конденсаторы с низким значением собственной индуктивности, могут применяться вместо отечественных конденсаторов К10-54 и импортных аналогов фирм Spectrum Control, Eurofarad, Syfer и других.

Фильтры Б24 (Рі-типа) и Б24-1 (С-типа) — малогабаритные трубчатые фильтры с диаметром керамической трубки всего 2,4 мм. Монтаж фильтров вариантов "а" и "б" осуществляется пайкой за корпус, варианта "в" — при помощи резьбовой втулки М4. Наибольшую крутизну амплитудно-частотной характеристики имеют фильтры Б24, могут применяться вместо Б23а.

Фильтры Б25 -1,2 – в керамическом корпусе. Производство прекращено, подлежат замене на фильтры Б25-3 или Б26-2. Рекомендации по замене см. ниже.

Фильтры Б25-3 – в металлическом корпусе с увеличенной толщиной проволочных выводов механически более прочные, удобны при монтаже и эксплуатации, имеют меньшие габаритные размеры и массу по сравнению с Б23Б.

Фильтры Б25-4 – малогабаритные фильтры в металлическом корпусе, массой до 1,5 г и могут применяться там, где масса и габариты играют важную роль. Малые габаритные размеры этих фильтров улучшают их помехоподавляющие свойства при применении в аппаратуре СВЧ.

Фильтры Б26-1 (С-тип), Б26-2 (LС-тип) и Б26-3 (Рі-тип) изготавливаются в металлическом корпусе, как и Б25-3, 4 и имеют по сравнению с ними более широкий диапазон номинальных напряжений (до 1000 В) и номинальных емкостей (до 22 мкФ).

Фильтры Б26-3 Рі-типа имеют наибольшую крутизну частотной зависимости вносимого затухания и могут применяться там, где высокие значения вносимого затухания требуются уже на относительно низких частотах.

Фильтры Б25 и Б26 могут заменить соответствующие импортные аналоги, устаревшие фильтры Б23Б, а их применение в радиоэлектронной аппаратуре существенно улучшит её помехозащищенность и электромагнитную совместимость.

Рекомендуемая замена фильтров Б25-1,2 на фильтры Б25-3 или Б26-2

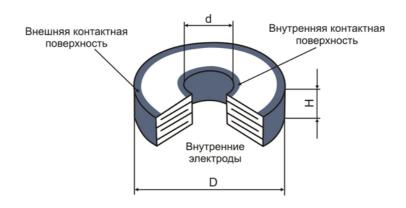
Фильтры Б25-1,2 в керамических корпусах с номинальным током 25 А являются емкостными фильтрами С-типа (без индуктивности в составе фильтра) и заменяются на фильтры Б25-3 в металлических корпусах тех же групп ТСЕ, номинальных напряжений и емкостей.

Фильтры Б25-1,2 в керамических корпусах с номинальным током 10 А являются индуктивноемкостными фильтрами LC-типа с минимальным значением индуктивности 0,05 мкГн. Такое низкое значение индуктивности практически не сказывается на помехоподавляющих свойствах этих фильтров по сравнению с фильтрами Б25-3 С-типа.

В большинстве случаев фильтры Б25-1,2 10 А могут быть заменены фильтрами Б25-3 10 А тех же групп ТСЕ, номинальных напряжений и емкостей. Если индуктивность в составе фильтра необходима, рекомендуется замена на фильтры Б26-2 LC-типа 15 А в соответствии с таблицей. При этом за счет более высоких значений номинальных напряжений и токов увеличится их эксплуатационная надежность.

Фильтры Б25-1,2			Фильтры Б26-2				
TCE	Сном	U _{ном,} B	TCE	С _{ном}	U _{ном} , B		
	1200 3900 пФ	80		1200 3900 пФ	250		
	4700 пФ 0,082 мкФ	00		4700 пФ 0,082 мкФ	100		
	270 1000 пФ	160		270 1000 пФ	350		
	12006800 пФ	160		1200– 6800 пФ	250		
МПО	8200 пФ 0,018 мкФ		МПО	8200 пФ 0,018 мкФ	160		
IVII IO	100 180 пФ				IVII IO	100 180 пФ	750
	220 1000 пФ	250		220 – 1000 пФ	350		
	1200 6800 пФ			1200 6800 пФ	250		
	68 1500 пФ	0		68 1500 пФ	750		
	1800 пФ] 0		1800 пФ	500		

	0,022 ; 0,033 мкФ			0,022; 0,033 мкФ	250
	0,047 0,1 мкФ	F0		0,047 0,1 мкФ	160
	0,15; 0,22 мкФ	50		0,15; 0,22 мкФ	100
	0,33 2,2 мкФ			0,33 2,2 мкФ	50
H20,	0,01; 0,015 мкФ	1120	0,01; 0,015 мкФ	350	
H50	0,022; 0,033 мкФ	160	H20, H50	0,022; 0,033 мкФ	250
	0,047 0,47 мкФ		1150	0,047 0,47 мкФ	160
	3300 пФ 0,01 мкФ	250		3300 пФ 0,01 мкФ	500
	0,015 0,22 мкФ		0,015 0,22 мкФ	250	
	3300 пФ 0,15 мкФ	500		3300 пФ 0,15 мкФ	500
	0,22 мкФ			0,22 мкФ	250
	0,33 0,68 мкФ	50	H90	0,33 0,68 мкФ	100
H90	1,0 10,0 мкФ			1,0 10,0 мкФ	50
	0,022; 0,033 мкФ	250	H20, H50	0,022; 0,033 мкФ	250
	0,047 0,68 мкФ	230	H90	0,047 0,68 мкФ	230


Справки и прием заказов по т/ф (812) 552-21-66; 247-14-53; 552-24-38.

Новая разработка

Технические условия: АЖЯР.673511.006ТУ. Категория качества ВП по ГОСТР РВ 20.39.411.

Предназначены для работы в цепях постоянного и переменного токов и в импульсных режимах.

Конденсаторы изготавливаются в водородоустойчивом исполнении.

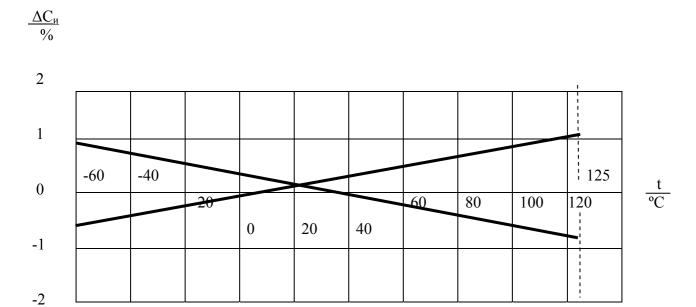
	Magaz F			
Типоразмер	Диа	иметр	Ц	Масса, г,
	наружный (D)	внутренний (d)	- H _{max}	не более
1	4,0±0,5	1,3±0,3		0,3
2	5,0±0,5	1,3±0,3	3,0	0,4
3	6,3±0,5	1,3±0,3		0,6
4	0.0.0.0	1,3±0,3	3,0	1,0
4	8,0±0,6	1,3±0,3	4,0	1,1
5	8,0±0,6	2,5±0,3	3,0	0,9
5	0,0±0,0	2,0±0,3	4,0	1,0
6	10,0±0,6	1,3±0,3	3,0	1,3
	10,0±0,0	1,3±0,3	4,0	1,5
7	10,0±0,6	2,5±0,3	3,0	1,2
/	10,0±0,0	2,0±0,3	4,0	1,4
8	12.0+0.6	1,3±0,3	3,0	2,0
0	12,0±0,6	1,3±0,3	4,0	2,5
0	12.010.6	2.5±0.2	3,0	1,9
9	12,0±0,6	2,5±0,3	4,0	2,4

Группа ТКЕ	МПО	H20; H50	H90		
Номинальное напряжение, В	100; 160; 250; 350; 500; 750; 1000	50; 100; 160; 250; 350; 500	50; 100; 250		
Номинальная емкость	4,7 пФ0,1 мкФ	470 пФ3,3 мкФ	0,01510 мкФ		
Допускаемые отклонения емкости, %	±20	±20; +50/-20	+80/-20		
Ряд емкостей	E12	E6			
Тангенс угла потерь, tgδ, не более	0,0015	0,035			
Сопротивление изоляции, не менее, МОм (для $C_{\text{ном}} \le 0,025 \text{ мк}\Phi$)	10 000	3000			
Постоянная времени, не менее, МОм·мкФ (для С _{ном} >0,025 мкФ)	250	250 75			
Индуктивность L между выводами 1 и 2 для Б26-2, Б26-3, не менее, мкГ		0,5			
Интервал рабочих температур, °C	-60	+125	-60 + 85		
Изменение емкости в интервале рабочих температур, %	±1		±90		
Климатическое исполнение	В по ГОСТ 20.39.414.1-97				
Минимальная наработка, час	25 000				
Срок сохраняемости, лет		25			

Обозначение при заказе: Конденсатор К10-81-100 В 2200 пФ ±20%-МП0-1 АЖЯР.673511.006ТУ

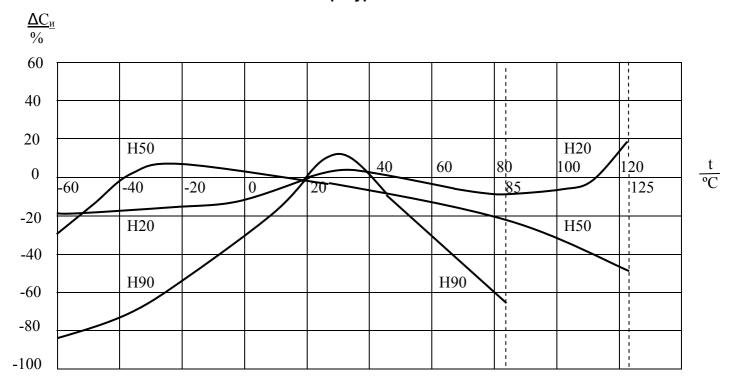
_	МПО											
Типо- размер				U _{ном} , В								
	100	160	250	350	500	750	1000					
1	2200 3900 пФ	560 1800 пФ	220 470 пФ	4,7 180 пФ	-	-	1					
2	3900 6800 пФ	1800 3300 пФ	470 1500 пФ	82 390 пФ	-	-	-					
3	8200 пФ 0,018 мкФ	3300 6800 пФ	1000 2700 пФ	270 820 пФ	-	-	-					
4	0,015 0,039 мкФ	6800 пФ 0,012 мкФ	1800 5600 пФ	1000 1500 пФ	470 820 пФ	47 470 пФ	-					
5	0,012 0,033 мкФ	5600 пФ 0,01 мкФ	1800 4700 пФ	1000 1500 пФ	470 820 пФ	47 390 пФ	-					
6	0,033 0,056 мкФ	0,012 0,027 мкФ	3300 пФ 0,01 мкФ	1800 2700 пФ	1000 1500 пФ	560 1000 пФ	100 330 пФ					
7	0,027 0,056 мкФ	0,012 0,022 мкФ	2700 пФ 0,01 мкФ	1800; 2200 пФ	1000 1500 пФ	470 1000 пФ	100 330 пФ					
8	0,056 0,1 мкФ	0,027 0,047 мкФ	6800 пФ 0,022 мкФ	3300 5600 пФ	1800 2700 пФ	680 1500 пФ	470; 560 пФ					
9	0,056 0,1 мкФ	0,027 0,047 мкФ	6800 пФ 0,022 мкФ	2700 5600 пФ	1800; 2200 пФ	560 1500 пФ	390; 470 пФ					

Примечание – Промежуточные значения номинальных емкостей фильтров по ГОСТ 28884, ряд Е12.


		H20; H50							H90			
Типо- размер					$U_{\text{ном}}$, В							
	50	100	160	250	350	500	50	100	250			
1	0,1 мкФ	0,047; 0,068 мкФ	0,015 0,033 мкФ	6800 пФ; 0,01 мкФ	470 6800 пФ	-	0,22 0,47 мкФ	0,047 0,15 мкФ	0,015 0,033 мкФ			
2	0,15 0,33 мкФ	0,1; 0,15 мкФ	0,033 0,068 мкФ	0,015; 0,022 мкФ	6800 пФ; 0,01 мкФ	-	0,47; 1,0 мкФ	0,15 0,33 мкФ	0,022 0,1 мкФ			
3	0,33; 0,47 мкФ	0,15; 0,22 мкФ	0,068; 0,1 мкФ	0,033; 0,047 мкФ	0,015; 0,022 мкФ	-	0,068 2,2 мкФ	0,22 0,47 мкФ	0,047 0,15 мкФ			
4	0,47 1,0 мкФ	0,33; 0,47 мкФ	0,1 0,22 мкФ	0,047; 0,068 мкФ	0,033; 0,047 мкФ	3300 0,033 мкФ	1,5 3,3 мкФ	0,47 1,0 мкФ	0,068 0,33 мкФ			
5	0,47; 0,68 мкФ	0,22; 0,33 мкФ	0,068 0,15 мкФ	0,047; 0,068 мкФ	0,033 мкФ	3300 0,022 мкФ	1,0 3,3 мкФ	0,33 0,68 мкФ	0,1 0,22 мкФ			
6	1,0; 1,5 мкФ	0,47; 0,68 мкФ	0,22; 0,33 мкФ	0,1; 0,15 мкФ	0,068; 0,1 мкФ	0,047; 0,068 мкФ	3,3 6,8 мкФ	0,68 2,2 мкФ	0,15 0,47 мкФ			
7	1,0; 1,5 мкФ	0,33 0,68 мкФ	0,15 0,33 мкФ	0,068; 0,1 мкФ	0,047; 0,068 мкФ	0,033 0,068 мкФ	2,2 4,7 мкФ	0,68 1,5 мкФ	0,15 0,47 мкФ			
8	2,2; 3,3 мкФ	1,0; 1,5 мкФ	0,47; 0,68 мкФ	0,22; 0,33 мкФ	0,15; 0,22 мкФ	0,1; 0,15 мкФ	4,7 10,0 мкФ	1,5 3,3 мкФ	0,22 1,0 мкФ			
9	2,2; 3,3 мкФ	0,68 1,5 мкФ	0,33; 0,47 мкФ	0,15; 0,22 мкФ	0,1; 0,15 мкФ	0,1 мкФ	3,3 10,0 мкФ	1,0 2,2 мкФ	0,22 0,68 мкФ			

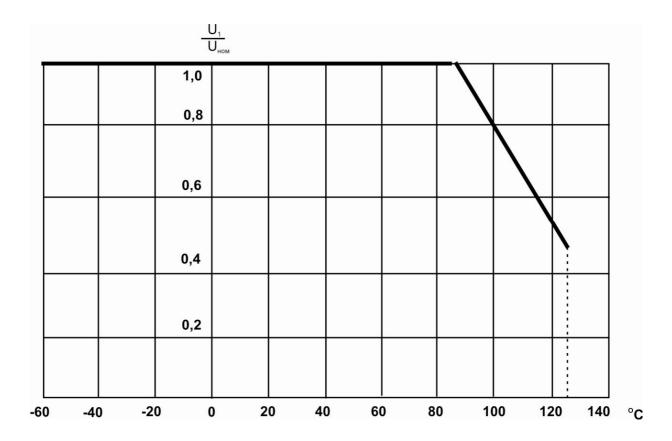
Примечание – Промежуточные значения номинальных емкостей фильтров по ГОСТ 28884, ряд Е6.

Номинальная			Вно		тухание, частоте,		нее		
емкость	0,01	0,1	1,0	10	30	100	300	1000	10 000
4,7 39 пФ	-	-	-	-	-	-	-	-	-
47 пФ	-	-	-	-	-			7	
56 пФ	-	-	-	-	-	2	5	8	
68 пФ	-	-	-	-	-			10	25
82 пФ	-	-	-	-	-		7	12	25
100; 120 пФ	-	-	-	-	-	3	10	20	
150; 180 пФ	-	-	-	-	3	8	15	21	
220; 270 пФ	-	-	-	-	4	10	17	22	35
330; 390 пФ	-	-	-	3	5	11	20	25	
470; 560 пФ	-	-	-	. 3	5	12	22	27	40
680; 820 пФ	-	-	-	4	10	15	25	35	
1000; 1200 пФ	-	-	-	6	15	20	30		
1500; 1800 пФ	-	-	-	7	16	22	32	40	
2200; 2700 пФ	-	-	2	9	17	25	33	40	50
3300; 3900 пФ	-	-		12	20	30	35		50
4700; 5600 пФ	-	-	3	15	25	32	40	45	
6800; 8200 пФ	-	-		20	23	35	40	45	
0,01; 0,012 мкФ	-	-	4	21	30	37	45	55	55
0,015; 0,018 мкФ	-	-	7	23	30	40	40	33	33
0,022; 0,027 мкФ	-	-	5	25	32	42	48	58	60
0,033; 0,039 мкФ	-	-	6	30	35			. 50	
0,047; 0,056 мкФ	-	-	8	33	40	45	50		
0,068; 0,082 мкФ	-	3	12	35	40			60	65
0,1; 0,15 мкФ	2	8	20	40	45	50	55	65	
0,22 мкФ	3	10	25	43	50	52	58	70	
0,33 мкФ	4	12	30	45	52	55	58	70	
0,47; 0,68 мкФ	6	14	33	50	J2	58	60		1
1,0; 1,5 мкФ	9	25	45	53	58	60	65	1	75
2,2; 3,3 мкФ	15	26	40	55	- 50	65		75	
4,7 мкФ	20	33	50	60	65	70	70		
6,8; 10 мкФ	25	40	52	65	70	70			


Примечание: Знак «-» означает, что вносимое затухание меньше 2 дБ.

Характер зависимости емкости конденсаторов группы МП0 от температуры

 $\Delta C_{\scriptscriptstyle \rm M}\,$ - относительное изменение емкости


Характер зависимости емкости конденсаторов групп H20, H50 и H90 от температуры

∆Си – относительное изменение емкости

ГИРИКОНД _____

Зависимость напряжения от температуры конденсаторов групп МП0, Н20 и Н50

Технические условия: АЖЯР.431145.003ТУ (категория качества ВП). АДПК.431145.003ТУ (ОТК).

Предназначены для подавления высокочастотных помех в диапазоне частот 700 кГц ... 10 ГГц в цепях постоянного и переменного токов и в импульсных режимах.

Изготавливаются двух типов Б24 (Рі-тип) и Б24-1 (С-тип), трех вариантов конструкции "а", "б", "в", отличающихся по способу крепления в аппаратуру.

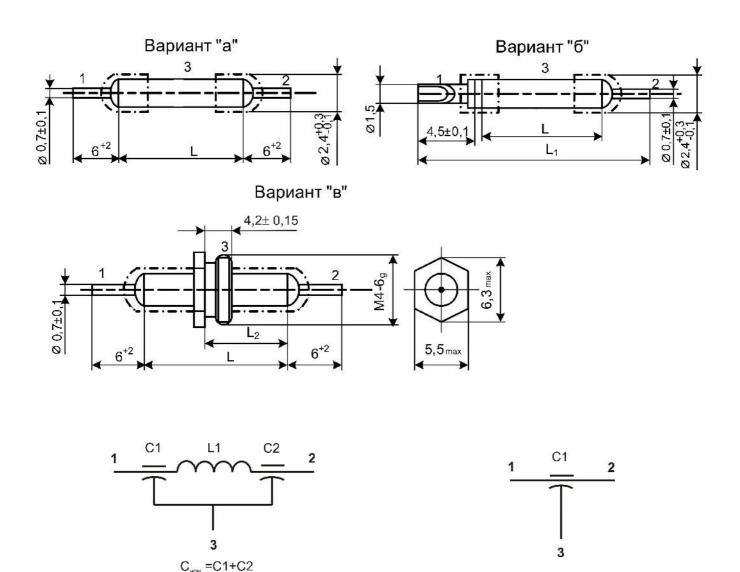
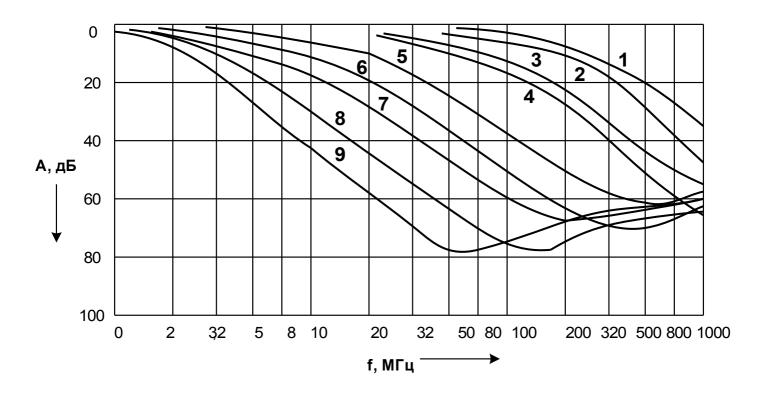


Схема электрическая фильтров Б24

Схема электрическая фильтров Б24-1

Обозначение при заказе: фильтр Б24а - 250 B - 62 пФ \pm 20% - M750 -10 АЖЯР.431145.003ТУ фильтр Б24-1a - 250 B - 62 пФ \pm 20% - M750 -10 АЖЯР.431145.003ТУ


Группа ТКЕ	M750	M1500	M2200	M3300	H30	H50	H70	H90	
Номинальное напряжение, В		250 100							
Номинальный ток, А			10)				5	
Номинальная емкость, пФ	4391	91240	240 560	560 910	1000 1500	4700 10 000			
Допускаемые отклонения емкости, %		±	20		+50)/-20	+80)/-20	
Тангенс угла потерь, tghe более	0,00	0,0020 0,005 0,01 0,035							
Сопротивление изоляции, не менее, МОм		10 000 4000							
Интервал рабочих температур, °C			-60	+125			-60	. +85	
Диапазон частот помехоподавления, МГц				0,7 1	10 000				
Вносимое затухание				см. табл	пицу 2				
TKE, 10 ⁻⁶ /°C	-750±120	-1500±250	-2200±500	-3300±500		-	-		
Изменение емкости в интервале рабочих температур, %	±12	±25	±30	±50	±30	±50	±70	±90	
Повышенная влажность при T=35°C				98%	6				
Масса, г, не более		0,5 (вариант а, б); 1,0 (вариант в)							
Минимальная наработка, час		25 000							
Срок сохраняемости, лет				25	5				

	Номинальная	Индук-	Номинальное	Номинальный	Вариа	нт констру	кции
Группа ТКЕ	емкость, пФ	тивность, не менее,	напряжение,	ток,	а, б, в	б	В
		мкГ	5	A	L ₂ , MM		
M750	4362	0,05			10	20,5	6
1017 50	4391	0,07			12	22,5	8
M1500	91180	0,08			10	20,5	6
1011300	91240	0,11),11		12	22,5	8
M2200	240430	0,08			10	20,5	6
WZ200	240560	0,11			12	22,5	8
M3300	560820	0,12	250	10	10	20,5	6
1013300	560910	0,18			12	22,5	8
H30	1000; 1200	1,0			10	20,5	6
ПЗО	10001500	1,5			12	22,5	8
H50	15002200	1,0			10	20,5	6
ПЭО	15002700	1,5			12	22,5	8
1170	3300	1,0			10	20,5	6
H70	3300; 4700	1,5	100	F	12	22,5	8
1100	4700	1,0	100	5	10	20,5	6
H90	470010 000	1,5			12	22,5	8

Примечание – Промежуточные значения номинальных емкостей фильтров по ГОСТ 28884:

- ряд Е24 для фильтров групп М750, М1500, М2200 и М3300;
- ряд Е12 для фильтров групп Н30 и Н50;
- ряд Е6 для фильтров групп Н70 и Н90.

Зависимость вносимого затухания фильтров Б24 от частоты

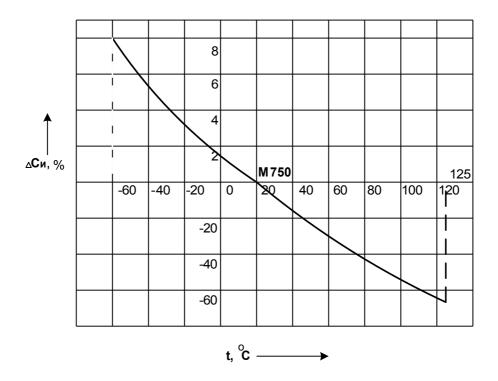
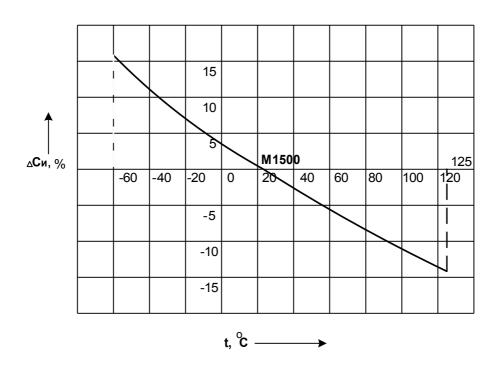
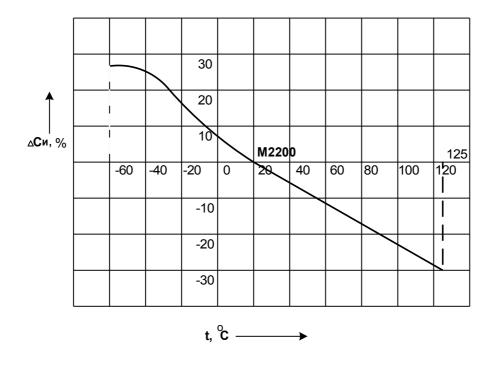

- 1 для фильтров с $C_{\text{ном}}$ = 47 пФ
- 2 для фильтров с $C_{\text{ном}}$ = 68 пФ
- 3 для фильтров с C_{ном} = 150 пФ
- 4 для фильтров с $C_{\text{ном}}$ = 220 пФ
- 5 для фильтров с $C_{\text{ном}}$ = $560 \text{ п}\Phi$
- 6 для фильтров с $C_{\text{ном}}$ = 910 пФ
- 7 для фильтров с $C_{\text{ном}}$ = 2200 пФ
- 8 для фильтров с $C_{\text{ном}}$ = 4300 пФ
- 9 для фильтров с Сном =10000 пФ

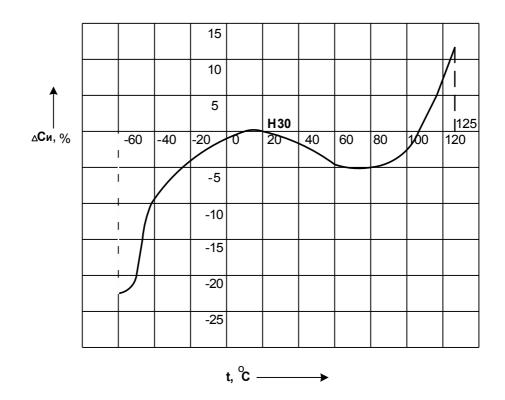
Таблица 2

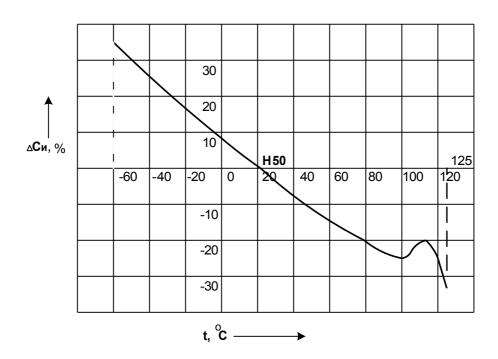

	Вносимое затухание, дБ, не менее на частоте, МГц							
Номинальная емкость	10	0	300					
	Б24	Б24-1	Б24	Б24-1				
43, 47, 51, 56, 62, 68, 75	-		3	-				
82, 91, 100, 110	3	-	10	5				
120, 130, 150, 160, 180	7	3	15	5				
200, 220, 240	10	5	25	15				
270, 300, 330, 360	12	8	28	15				
390, 430, 470	15	10	30	17				
510, 560, 620	20	15	35	17				
680, 750, 820, 910	30	20	40	20				
1000, 1200, 1500	40	20	50	25				
1800, 2200, 2700, 3300, 4700	45	25	60	30				
6800, 10 000	60	30	60	35				

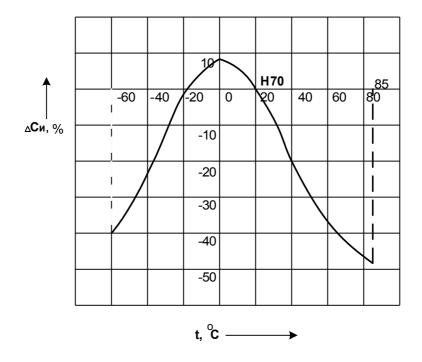
Примечание: Знак "-" означает, что вносимое затухание меньше 3 дБ.

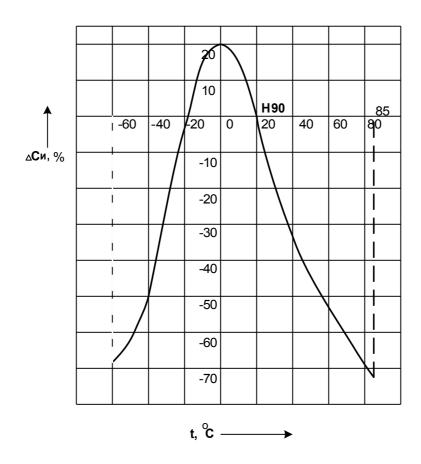

Температурная зависимость емкости

∆Си – относительное изменение емкости


∆Си – относительное изменение емкости

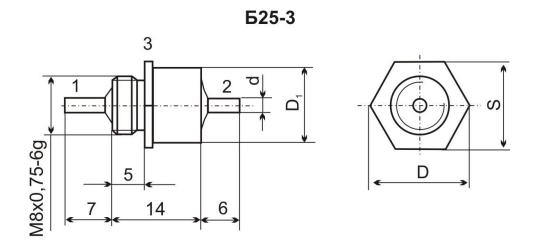

ΔСи – относительное изменение емкости

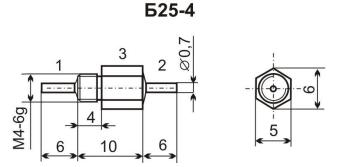

ΔСи − относительное изменение емкости


ΔСи – относительное изменение емкости

∆Си – относительное изменение емкости

ΔСи – относительное изменение емкости




ΔСи – относительное изменение емкости

Технические условия: АЖЯР.431145.001ТУ (категория качества ВП). АДПК.431145.003ТУ (ОТК).

Предназначены для подавления высокочастотных помех в диапазоне частот 10 кГц ... 10 ГГц в цепях постоянного и переменного токов и в импульсных режимах.

Фильтры изготавливаются в водородоустойчивом исполнении.

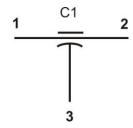


Схема электрическая

	Вариант фильтров								
Типоразмер		Б25-4							
фильтров	S _{max}	D _{max}	D _{1 max}	Масса, г, не более	Масса, г, не более				
1	10	11.6	6,5	5,0					
2	10	11,6	7,5	5,5					
3	12	13,8	9,5	6,5	1,5				
4	1.1	16.4	11,5	9,5					
5	14	16,4	13,5	12					

		d, мм		
Вариант фильтров	I _{HOM} , A	номин.	пред. откл.	
Б25-3	10	0,8		
B20-3	10	1	.0.4	
Б25-3	25	2	±0,1	

		T				
Группа ТКЕ	МП0	H20; H50	H90			
Номинальное напряжение, В	80; 160; 250; 500	50; 160 (100*); 250; 500	50; 100; 250			
Номинальная емкость	4,7 пФ0,082 мкФ	470 пФ…2,2 мкФ	0,01510 мкФ			
Допускаемые отклонения емкости,%	$\pm 0.5; \pm 1.0$ пФ для $C_{\text{HOM}} < 10$ пФ ± 20 для 10 пФ $\leq C_{\text{HOM}} < 47$ пФ $\pm 10; \pm 20$ для $C_{\text{HOM}} \geq 47$ пФ	± 20 для 10 пФ $\leq C_{\text{HOM}} < 47$ пФ $\qquad \pm 20; \ +50/\text{-}20 \qquad \qquad +$				
Ряд емкостей	E12	E6				
Тангенс угла потерь, $tg\delta$, не более	- для С _{ном} ≤10 пФ: не нормируется - для 10 пФ<С _{ном} ≤50 пФ: 1,5(150/С _{ном} +7)·10 ⁻⁴ - для С _{ном} >50 пФ: 0,0015	D ⁻⁴				
Сопротивление изоляции, не менее, МОм (для С _{ном} ≤ 0,025 мкФ)	10 000	3000				
Постоянная времени, не менее, МОм·мкФ (для С _{ном} >0,025 мкФ)	250	75				
Индуктивность L между выводами 1 и 2 для Б25-1, Б25-2 (10 A), не менее, мкГ		0,05				
Интервал рабочих температур, °C	-60 +1	25	-60 +85			
Изменение емкости в интервале рабочих температур, %	±1	±90				
Климатическое исполнение	В по Г	OCT 20.39.414.1-97				
Минимальная наработка, час		25 000				
Срок сохраняемости, лет	25					

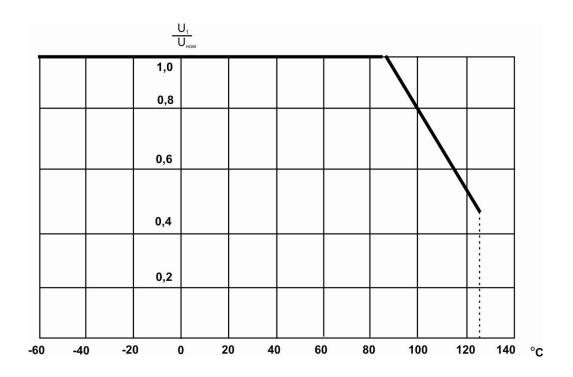
Обозначение при заказе:

Фильтр Б25-3-160 B-10 A-270 пФ±20%-МП0-С-1-10 АЖЯР.431145.001ТУ (при S=10 мм)

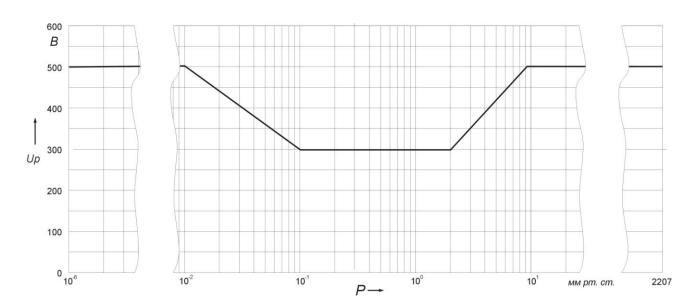
				М	П0			H20;	H50			H90	
Тип	I, A	Типо-		Номинальное напряжение, В									
	А	мер	80	160	250	500	50	160 (100*)	250	500	50	100	250
		1	1200 2700 пФ	270 1000 пФ	100 220 пФ	_	0,022 0,15 мкФ	0,01; 0,015 мкФ	3300 6800 пФ	_	0,22 0,68 мкФ	ı	0,022 0,047 мкФ
		2	3300 4700 пФ	1200 2200 пФ	270 560 пФ	_	0,22; 0,33 мкФ	0,022; 0,033 мкФ	0,01 0,022 мкФ	3300 10 000 пФ	1,0; 1,5 мкФ	П	0,047; 0,1 мкФ
	10	3	5600 27 000 пФ	2700 4700 пФ	680 1000 пФ	68 560 пФ	0,47 мкФ	0,047; 0,068 мкФ	0,033; 0,047 мкФ	0,015; 0,022 мкФ	2,2; 3,3 мкФ	ı	0,1 0,22 мкФ
		4	0,033 0,047 мкФ	5600 6800 пФ	1200 1800 пФ	680 1000 пФ	0,68; 1,0 мкФ	0,1; 0,15 мкФ	0,068; 0,1 мкФ	0,033; 0,047 мкФ	3,3; 4,7 мкФ	I	0,22; 0,33 мкФ
Б25-3		5	0,056 0,082 мкФ	8200 18 000 пФ	2200 6800 пФ	1200 1800 пФ	1,5; 2,2 мкФ	0,22 0,47 мкФ	0,15; 0,22 мкФ	0,068 0,15; 0, 22*; 0,33* мкФ	6,8; 10,0 мкФ	1	0,33 0,68 мкФ
		3	5600 27 000 пФ	2700 4700 пФ	330 1000 пФ	68560 пФ	0,15 0,47 мкФ	0,033 0,068 мкФ	0,01 0,047 мкФ	4700 пФ 0,015 мкФ	0,068 2,2 мкФ	I	0,047 0,22 мкФ
	25	4	0,033 0,047 мкФ	5600 6800 пФ	1200 1800 пФ	680 1000 пФ	0,68; 1,0 мкФ	0,1; 0,15 мкФ	0,047; 0,068 мкФ	0,022 0,047 мкФ	3,3; 4,7 мкФ	I	0,22; 0,33 мкФ
		5	0,056 0,082 мкФ	8200 18 000 пФ	2200 6800 пФ	1200 1800 пФ	1,5; 2,2 мкФ	0,22; 0,33 мкФ	0,1; 0,15 мкФ	0,068; 0,1 мкФ	4,7; 6,8 мкФ	-	0,33; 0,47 мкФ
Б25-4	10	_	680 1500 пФ	150 560 пФ	4,7 120 пФ	-	0,047; 0,1 мкФ	0,01 0,033 мкФ	470 6800 пФ	_	0,22; 0,33 мкФ	0,047 0,15 мкФ	0,015; 0,033 мкФ

^{*}Только для фильтров Б25-3

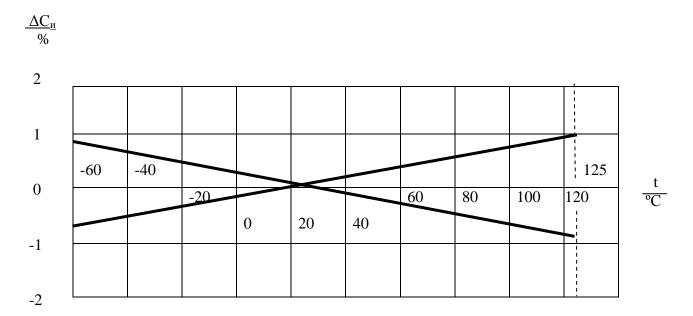
Номинальная	Вносимое затухание, дБ, не менее на частоте, МГц										
емкость	0,01	0,1	1	10	30	100	300	1000			
4,78,2 пФ	-	-	-	-	-	-	-	-			
10 пФ	-	-	-	-	-	-	-	3			
12 пФ	-	-	-	-	-	-	-	3			
15 пФ	-	-	-	-	-	-	-	4			
18 пФ	-	-	-	-	-	-	-	4			
22 пФ	-	-	-	-	-	-	-	5			
27 пФ	-	-	-	-	-	-	3	5			
33 пФ	-	-	-	-	-	-	4	6			
39 пФ	-	-	-	-	-	-	5	6			
47 пФ	-	-	-	-	-	2	5	7			
56 пФ	-	-	-	-	-	2	5	8			
68 пФ	-	-	-	-	-	2	5	10			
82 пФ	-	-	-	-	-	2	7	12			
100 пФ	-	-	-	-	-	3	10	20			
120 пФ	-	-	-	-	-	3	10	20			
150 пФ	-	-	-	-	2	8	15	21			
180 пФ	-	-	-	-	2	8	15	21			
220 пФ	-	-	-	-	3	10	17	22			
270 пФ	-	-	-	-	3	10	17	22			
330 пФ	-	-	-	-	3,5	11	20	24			
390 пФ	-	-	-	-	3,5	11	20	24			
470 пФ	-	-	-	-	4	12	22	27			
560 пФ	-	-	-	-	4	12	22	27			
680 пФ	-	-	-	5	10	15	25	35			
820 пФ	-	-	-	5	10	15	25	35			
1000 пФ	-	-	-	6	15	20	30	40			
1200 пФ	-	-	-	6	15	20	30	40			
1500 пФ	-	-	-	7	16	22	32	40			
1800 пФ	-	-	-	7	16	22	32	40			
2200 пФ	-	-	2	9	17	25	33	40			
2700 пФ	-	-	2	9	17	25	33	40			
3300 пФ	-	-	3	12	20	30	35	40			
4700 пФ	-	-	3	15	25	32	40	45			
5600 пФ	-	-	3	15	25	32	40	45			
6800 пФ	-	-	3	20	25	35	40	45			
8200 пФ	-	-	3	29	25	35	40	45			


0,01 мкф - - 4 21 30 37 45 55 0,012 мкф - - 4 21 30 37 45 55 0,015 мкф - - 4 23 30 40 45 55 0,018 мкф - - 4 23 30 40 45 55 0,022 мкф - - 4,5 25 32 42 48 58 0,027 мкф - - 4,5 25 32 42 48 58 0,033 мкф - - 6 30 35 45 50 58 0,039 мкф - - 6 30 35 45 50 58 0,047 мкф - - 8 33 40 45 50 60 0,056 мкф - - 8 33 40 45 50 60									
0,015 мкф - - 4 23 30 40 45 55 0,018 мкф - - 4 23 30 40 45 55 0,022 мкф - - 4,5 25 32 42 48 58 0,027 мкф - - 4,5 25 32 42 48 58 0,033 мкф - - 6 30 35 45 50 58 0,039 мкф - - 6 30 35 45 50 58 0,047 мкф - - 8 33 40 45 50 60 0,056 мкф - - 8 33 40 45 50 60 0,068 мкф - 3 10 35 40 45 50 60 0,15 мкф 2 8 25 45 50 52 55 60	0,01 мкФ	-	-	4	21	30	37	45	55
0,018 мкф - - 4 23 30 40 45 55 0,022 мкф - - 4,5 25 32 42 48 58 0,027 мкф - - 4,5 25 32 42 48 58 0,033 мкф - - 6 30 35 45 50 58 0,039 мкф - - 6 30 35 45 50 58 0,047 мкф - - 8 33 40 45 50 60 0,056 мкф - - 8 33 40 45 50 60 0,068 мкф - - 8 33 40 45 50 60 0,082 мкф - 3 10 35 40 45 50 60 0,15 мкф 2 8 25 45 50 52 55 60	0,012 мкФ	-	-	4	21	30	37	45	55
0,022 мкф - - 4,5 25 32 42 48 58 0,027 мкф - - 4,5 25 32 42 48 58 0,033 мкф - - 6 30 35 45 50 58 0,039 мкф - - 6 30 35 45 50 58 0,047 мкф - - 8 33 40 45 50 60 0,056 мкф - - 8 33 40 45 50 60 0,068 мкф - 3 10 35 40 45 50 60 0,082 мкф - 3 10 35 40 45 50 60 0,15 мкф 2 8 25 45 50 52 55 60 0,15 мкф 2 8 25 45 50 52 55 60 0,22 мкф 3 10 28 50 53 55 58 65	0,015 мкФ	-	-	4	23	30	40	45	55
0,027 мкФ - - 4,5 25 32 42 48 58 0,033 мкФ - - 6 30 35 45 50 58 0,039 мкФ - - 6 30 35 45 50 58 0,047 мкФ - - 8 33 40 45 50 60 0,056 мкФ - - 8 33 40 45 50 60 0,068 мкФ - - 8 33 40 45 50 60 0,082 мкФ - 3 10 35 40 45 50 60 0,082 мкФ - 3 10 35 40 45 50 60 0,15 мкФ 2 8 25 45 50 52 55 60 0,22 мкФ 3 10 28 50 53 55 58 65 0,33 мкФ 4 12 30 51 55 58 58 65	0,018 мкФ	-	-	4	23	30	40	45	55
0,033 мкф - - 6 30 35 45 50 58 0,039 мкф - - 6 30 35 45 50 58 0,047 мкф - - 8 33 40 45 50 60 0,056 мкф - - 8 33 40 45 50 60 0,068 мкф - 3 10 35 40 45 50 60 0,082 мкф - 3 10 35 40 45 50 60 0,15 мкф 2 8 25 45 50 52 55 60 0,15 мкф 2 8 25 45 50 52 55 60 0,22 мкф 3 10 28 50 53 55 58 65 0,33 мкф 4 12 30 51 55 58 58 65 0,47 мкф 6 14 33 53 55 60 65 70	0,022 мкФ	-	-	4,5	25	32	42	48	58
0,039 мкф - - 6 30 35 45 50 58 0,047 мкф - - 8 33 40 45 50 60 0,056 мкф - - 8 33 40 45 50 60 0,068 мкф - 3 10 35 40 45 50 60 0,082 мкф - 3 10 35 40 45 50 60 0,15 мкф 2 8 25 45 50 52 55 60 0,15 мкф 2 8 25 45 50 52 55 60 0,22 мкф 3 10 28 50 53 55 58 65 0,33 мкф 4 12 30 51 55 58 58 65 0,47 мкф 6 14 33 53 55 60 65 70 1,0 мкф 9 25 45 55 60 65 65 70	0,027 мкФ	-		4,5	25	32	42	48	58
0,047 мкф - - 8 33 40 45 50 60 0,056 мкф - - 8 33 40 45 50 60 0,068 мкф - 3 10 35 40 45 50 60 0,082 мкф - 3 10 35 40 45 50 60 0,1 мкф 2 8 25 45 50 52 55 60 0,15 мкф 2 8 25 45 50 52 55 60 0,22 мкф 3 10 28 50 53 55 58 65 0,33 мкф 4 12 30 51 55 58 58 65 0,47 мкф 6 14 33 53 55 60 65 70 1,0 мкф 9 25 45 55 60 65 70 1,5 мкф 12 25 45 56 60 65 65 70	0,033 мкФ	-	-	6	30	35	45	50	58
0,056 мкФ - - 8 33 40 45 50 60 0,068 мкФ - 3 10 35 40 45 50 60 0,082 мкФ - 3 10 35 40 45 50 60 0,1 мкФ 2 8 25 45 50 52 55 60 0,15 мкФ 2 8 25 45 50 52 55 60 0,22 мкФ 3 10 28 50 53 55 58 65 0,33 мкФ 4 12 30 51 55 58 58 65 0,47 мкФ 6 14 33 53 55 60 65 70 1,0 мкФ 9 25 45 55 60 65 70 1,5 мкФ 12 25 45 56 60 65 65 70 1,5 мкФ 18 30 45 56 60 65 67 70	0,039 мкФ	-	-	6	30	35	45	50	58
0,068 мкф - 3 10 35 40 45 50 60 0,082 мкф - 3 10 35 40 45 50 60 0,1 мкф 2 8 25 45 50 52 55 60 0,15 мкф 2 8 25 45 50 52 55 60 0,22 мкф 3 10 28 50 53 55 58 65 0,33 мкф 4 12 30 51 55 58 58 65 0,47 мкф 6 14 33 53 55 60 65 70 0,68 мкф 7 15 35 53 55 64 65 70 1,0 мкф 9 25 45 55 60 65 65 70 1,5 мкф 12 25 45 56 60 65 65 70 2,2 мкф 15 26 45 56 60 65 67 70	0,047 мкФ	-		8	33	40	45	50	60
0,082 мкф - 3 10 35 40 45 50 60 0,1 мкф 2 8 25 45 50 52 55 60 0,15 мкф 2 8 25 45 50 52 55 60 0,22 мкф 3 10 28 50 53 55 58 65 0,33 мкф 4 12 30 51 55 58 58 65 0,47 мкф 6 14 33 53 55 60 65 70 0,68 мкф 7 15 35 53 55 64 65 70 1,0 мкф 9 25 45 56 60 65 65 70 1,5 мкф 12 25 45 56 60 65 65 70 2,2 мкф 15 26 45 56 60 65 67 70 3,3 мкф 18 30 45 56 60 65 70 70	0,056 мкФ	-		8	33	40	45	50	60
0,1 мкф 2 8 25 45 50 52 55 60 0,15 мкф 2 8 25 45 50 52 55 60 0,22 мкф 3 10 28 50 53 55 58 65 0,33 мкф 4 12 30 51 55 58 58 65 0,47 мкф 6 14 33 53 55 60 65 70 0,68 мкф 7 15 35 53 55 64 65 70 1,0 мкф 9 25 45 55 60 65 65 70 1,5 мкф 12 25 45 56 60 65 65 70 2,2 мкф 15 26 45 56 60 65 67 70 3,3 мкф 18 30 45 56 60 68 69 70 4,7 мкф 20 33 50 60 65 70 70 70 6,8 мкф 25 40 51 65 70 70 70 70	0,068 мкФ	-	3	10	35	40	45	50	60
0,15 мкф 2 8 25 45 50 52 55 60 0,22 мкф 3 10 28 50 53 55 58 65 0,33 мкф 4 12 30 51 55 58 58 65 0,47 мкф 6 14 33 53 55 60 65 70 0,68 мкф 7 15 35 53 55 64 65 70 1,0 мкф 9 25 45 55 60 65 65 70 1,5 мкф 12 25 45 56 60 65 65 70 2,2 мкф 15 26 45 56 60 65 67 70 3,3 мкф 18 30 45 56 60 68 69 70 4,7 мкф 20 33 50 60 65 70 70 70 70 6,8 мкф 25 40 51 65 70 70 70 70	0,082 мкФ	-	3	10	35	40	45	50	60
0,22 мкФ 3 10 28 50 53 55 58 65 0,33 мкФ 4 12 30 51 55 58 58 65 0,47 мкФ 6 14 33 53 55 60 65 70 0,68 мкФ 7 15 35 53 55 64 65 70 1,0 мкФ 9 25 45 55 60 65 65 70 1,5 мкФ 12 25 45 56 60 65 65 70 2,2 мкФ 15 26 45 56 60 65 67 70 3,3 мкФ 18 30 45 56 60 68 69 70 4,7 мкФ 20 33 50 60 65 70 70 70 70 6,8 мкФ 25 40 51 65 70 70 70 70	0,1 мкФ	2	8	25	45	50	52	55	60
0,33 мкф 4 12 30 51 55 58 58 65 0,47 мкф 6 14 33 53 55 60 65 70 0,68 мкф 7 15 35 53 55 64 65 70 1,0 мкф 9 25 45 55 60 65 65 70 1,5 мкф 12 25 45 56 60 65 65 70 2,2 мкф 15 26 45 56 60 65 67 70 3,3 мкф 18 30 45 56 60 68 69 70 4,7 мкф 20 33 50 60 65 70 70 70 6,8 мкф 25 40 51 65 70 70 70 70	0,15 мкФ	2	8	25	45	50	52	55	60
0,47 мкФ 6 14 33 53 55 60 65 70 0,68 мкФ 7 15 35 53 55 64 65 70 1,0 мкФ 9 25 45 55 60 65 65 70 1,5 мкФ 12 25 45 56 60 65 65 70 2,2 мкФ 15 26 45 56 60 65 67 70 3,3 мкФ 18 30 45 56 60 68 69 70 4,7 мкФ 20 33 50 60 65 70 70 70 6,8 мкФ 25 40 51 65 70 70 70 70	0,22 мкФ	3	10	28	50	53	55	58	65
0,68 мкФ 7 15 35 53 55 64 65 70 1,0 мкФ 9 25 45 55 60 65 65 70 1,5 мкФ 12 25 45 56 60 65 65 70 2,2 мкФ 15 26 45 56 60 65 67 70 3,3 мкФ 18 30 45 56 60 68 69 70 4,7 мкФ 20 33 50 60 65 70 70 70 6,8 мкФ 25 40 51 65 70 70 70 70	0,33 мкФ	4	12	30	51	55	58	58	65
1,0 мкФ 9 25 45 55 60 65 65 70 1,5 мкФ 12 25 45 56 60 65 65 70 2,2 мкФ 15 26 45 56 60 65 67 70 3,3 мкФ 18 30 45 56 60 68 69 70 4,7 мкФ 20 33 50 60 65 70 70 70 6,8 мкФ 25 40 51 65 70 70 70 70	0,47 мкФ	6	14	33	53	55	60	65	70
1,5 мкФ 12 25 45 56 60 65 65 70 2,2 мкФ 15 26 45 56 60 65 67 70 3,3 мкФ 18 30 45 56 60 68 69 70 4,7 мкФ 20 33 50 60 65 70 70 70 6,8 мкФ 25 40 51 65 70 70 70 70	0,68 мкФ	7	15	35	53	55	64	65	70
2,2 мкФ 15 26 45 56 60 65 67 70 3,3 мкФ 18 30 45 56 60 68 69 70 4,7 мкФ 20 33 50 60 65 70 70 70 6,8 мкФ 25 40 51 65 70 70 70 70	1,0 мкФ	9	25	45	55	60	65	65	70
3,3 мкФ 18 30 45 56 60 68 69 70 4,7 мкФ 20 33 50 60 65 70 70 70 6,8 мкФ 25 40 51 65 70 70 70 70	1,5 мкФ	12	25	45	56	60	65	65	70
4,7 ΜΚΦ 20 33 50 60 65 70 70 70 6,8 ΜΚΦ 25 40 51 65 70 70 70 70	2,2 мкФ	15	26	45	56	60	65	67	70
6,8 мкФ 25 40 51 65 70 70 70 70	3,3 мкФ	18	30	45	56	60	68	69	70
	4,7 мкФ	20	33	50	60	65	70	70	70
10 мкФ 30 45 55 70 70 70 70 70	6,8 мкФ	25	40	51	65	70	70	70	70
	10 мкФ	30	45	55	70	70	70	70	70

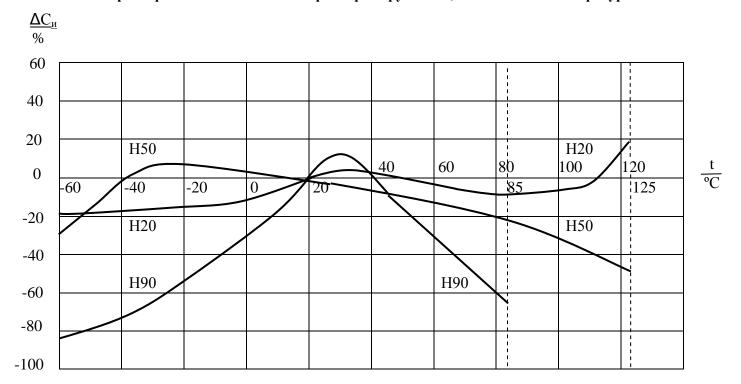
Примечания


¹ Знак «-» означает, что вносимое затухание меньше 2 дБ.

² Вносимое затухание фильтров Б25-4 в диапазоне частот свыше 1000 до 10 000 МГц включительно не менее значений, указанных в таблице для частоты 1000 МГц.

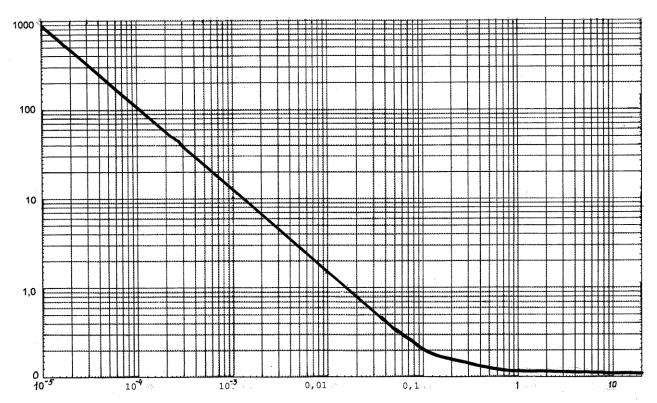

Зависимость напряжения от температуры фильтров групп МП0, Н20 и Н50

Зависимость напряжения от давления



Характер зависимости емкости фильтров группы МП0 от температуры

 $\Delta C_{\scriptscriptstyle \rm H}\,$ - относительное изменение емкости


Характер зависимости емкости фильтров групп Н20, Н50 и Н90 от температуры

∆Си – относительное изменение емкости

Типовая зависимость частоты среза фильтров от емкости

мкФ

Рекомендуемая замена конденсаторов К10-51 на фильтры Б25-4

Фильтры Б25-4 при одинаковых с конденсаторами К10-51 размерами за счет применения в качестве емкостного элемента многослойного конденсатора и металлического корпуса имеют расширенную шкалу номинальных емкостей, высокие характеристики помехоподавления и более удобны при монтаже в аппаратуру.

			K10-51						
Группа температурной стабильности		ИПО, М4 [.] 750, М15			H30, H7	0		H90	
Номинальная емкость	3,	9150	пФ	330) 2200) пФ	33	00; 4700) пФ
Номинальное напряжение, В					350				
Номинальный ток, А					10				
Диапазон частот помехоподавления				Не н	нормиру	ется			
Вносимое затухание				Не н	нормиру	ется			
			Б25-4						
Группа температурной стабильности		МП0			H20, H50)		H90	
Номинальная емкость	680 1500 пФ	150 560 пФ	4,7 120 пФ	0,047; 0,1 мкФ	0,01 0,033 мкФ	470 6800 пФ	0,22; 0,33 мкФ	0,047 0,15 мкФ	0,015; 0,033 мкФ
Номинальное напряжение, В	80	160	250	50	100	250	50	100	250
Номинальный ток, А					10				
Диапазон частот помехоподавления	0,3 МГц 10 ГГц								
Вносимое затухание				1	до 70 дЕ	•			

Технические условия: АЖЯР.431145.005ТУ (категория качества ВП). АДПК.431145.004ТУ (ОТК).

Предназначены для подавления высокочастотных помех в диапазоне частот 10 кГц ... 10 ГГц в цепях постоянного и переменного токов и в импульсных режимах.

Фильтры изготавливаются в водородоустойчивом исполнении.

Для фильтров Б26-3 Рі-типа расширен диапазон номинальных емкостей до 22 мкФ, номинальный ток увеличен до 25 А, номинальное напряжение - до 1000 В

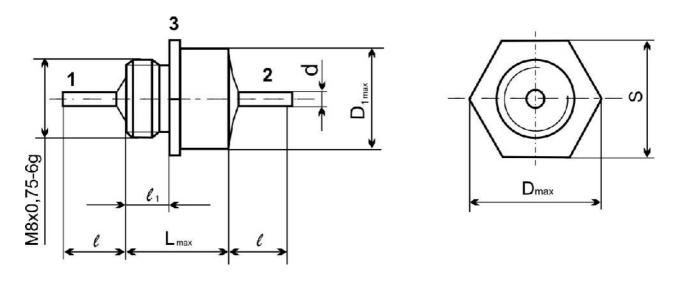


Рис. 1 C-фильтры Б26 – 1 (15 A и 25 A), LC-фильтры Б26-2 (15 A), PC-фильтры Б26-3 (15 A и 25 A)

Размеры и масса фильтров Б26-1, 2, 3 по рис.1

Вариант электрич. схемы	I _{ном} ,	Типо- размер	Ѕ, мм	L _{max} ,		$\ell_{\scriptscriptstyle I}$	D _{max} ,	D _{1max} ,	d, мм	Масса, г, не более
		1	10				11.6	6,5		4,3
		2					11,6	7,5		4,6
1, 2	15	3	12				13,8	9,5	1,0	5,1
		4	14	15	6	5	16,4	11,5		7,1
		5		15	0	5	10,4	13,5		8,1
		3	12				13,8	9,5		6,0
1	25	4	14				16.4	11,5	2,0	8,5
		5	14				16,4	13,5		10,0
3	15		14	22	8	6	16,4	12.5	1,0	20,0
3	25	_	14	22	0	U	10,4	13,5	2,0	20,0

	14	_			_		_
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	и	u	И	v.	7)	_	,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	41	_		•	_		_

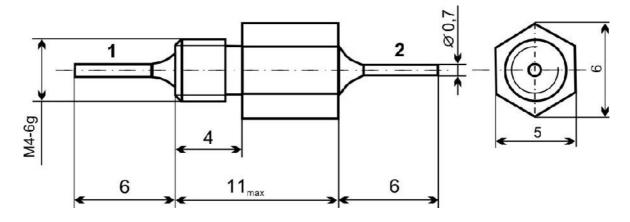
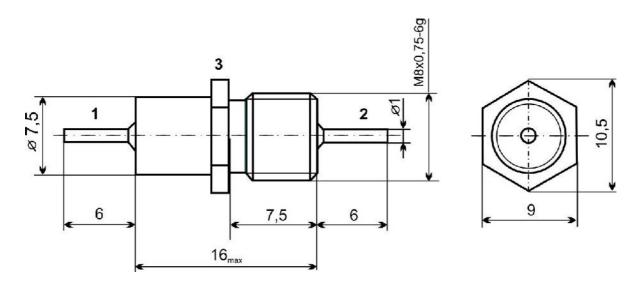
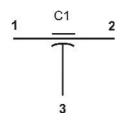
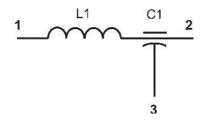
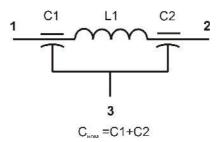


Рис.2 C-фильтры Б26 -1 и LC-фильтры Б26- 2 (10 A), масса не более 1,5 г.


Рис.3 Рі-фильтры Б26-3 (15 А), масса не более 4,5 г

Электрическая схема варианта 1 (С-фильтры Б26-1 с I $_{\text{ном}}$ = 10; 15; 25 A)

Электрическая схема варианта 2 (LC-фильтры Б26-2 с $I_{\text{ном}}$ = 10; 15 A)

Электрическая схема варианта 3 (Рі-фильтры Б26-3 с І _{ном} = 15; 25 A)

Обозначение при заказе: Фильтр Б26-1-160 B-15 A-2200 пФ \pm 20%-МП0-1 АЖЯР.431145.005ТУ Фильтр Б26-2-50 B-10 A-0,33 мкФ \pm 80/-20-Н90 АЖЯР.431145.005ТУ Фильтр Б26-3-160 B-15 A-6800 пФ \pm 20%-МП0 АЖЯР.431145.005ТУ

Примечание – Промежуточные значения номинальных емкостей фильтров по ГОСТ 28884, ряд Е12.

Группа ТКЕ	МП0	H20; H50	H90			
Номинальное напряжение, В	100; 160; 250; 350; 500; 750; 1000	32; 50; 100; 160; 250; 350; 500	32; 50; 100; 250			
Номинальная емкость	47 пФ0,22 мкФ	470 пФ6,8 мкФ	0,01522 мкФ			
Допускаемые отклонения емкости, %	±20	±20; +50/-20	+80/-20			
Ряд емкостей	E12	E	<u> </u> =6			
Тангенс угла потерь, tg⊸lне более	0,0015	0,0	035			
Сопротивление изоляции, не менее, МОм (для С _{ном} ↑ 0,025 мкФ)	10 000	10 000 3000				
Постоянная времени, не менее, МОм·мкФ (для С _{ном} >0,025 мкФ)	250	7	75			
Индуктивность L между выводами 1 и 2 для Б26-2, Б26-3, не менее, мкГ		0,5				
Интервал рабочих температур, °C	-60	+125	-60 +85			
Изменение емкости в интервале рабочих температур, %	±1	±20 (H20) ±50 (H50)	±90			
Климатическое исполнение	E	3 по ГОСТ 20.39.414.1-97	1			
Минимальная наработка, час	25 000					
Срок сохраняемости, лет	сохраняемости, лет 25					

		Типо-				МП0			
Вариант	I _{ном} А	размер			Номиналь	ное напряжен	ие, В		
			100	160	250	350	500	750	1000
Б26-1 Б26-2 (Рис.2)	10	-	2200 3300 пФ	1200 1800 пФ	220 1000 пФ	47 180 пФ	-	-	ı
		1	3900 6800 пФ	2200 3300 пФ	1200; 1500 пФ	220 390 пФ	-	-	-
		2	8200пФ 0,018 мкФ	3900 6800 пФ	1800 3900 пФ	470 820 пФ	-	-	-
Б26-1 Б26-2 (Рис.1)		3	0,022 0,039 мкФ	8200 пФ 0,012 мкФ	4700 6800 пФ	1000 1500 пФ	470 820 пФ	47 470 пФ	-
(i no. i)	15	4	0,047; 0,056 мкФ	0,015 0,027 мкФ	8200пФ 0,012 мкФ	1800 2700 пФ	1000 1500 пФ	560 1000 пФ	100 390 пФ
		5	0,068 0,1мкФ	0,033 0,047 мкФ	0,015 0,022 мкФ	3300 5600 пФ	1800 2700 пФ	1200; 1500 пФ	470; 560 пФ
Б26-3 (Рис.1)		-	0,15 0,22 мкФ	0,068 0,1 мкФ	0,015 0,047 мкФ	6800 пФ 0,01 мкФ	1500 4700 пФ	-	1000; 1200 пФ
Б26-3 (Рис.3)		-	0,018 0,033 мкФ	8200 пФ; 0,01 мкФ	1800 2700 пФ	680; 1500 пФ	-	-	-
		3	0,012 0,033 мкФ	6800пФ 0,01 мкФ	1200 4700 пФ	1000 1500 пф	470 820 пФ	47 390 пФ	-
Б26-1 (Рис.1)	25	4	0,039 0,056 мкФ	0,012 0,022 мкФ	5600пФ 0,01мкФ	1800 2200 пФ	1000 1500 пФ	470 1000 пФ	100 330 пФ
		5	0,068 0,1 мкФ	0,027 0,047 мкФ	0,012 0,022 мкФ	2700 5600 пФ	1800; 2200 пФ	1200; 1500 пФ	390; 470 пФ

						H20, H50)		
Вариант	Іном, А	Типо- размер			Номі	инальное напр	эяжение, В		
			32	50	100	160	250	350	500
Б26-1 Б26-2 (Рис.2)	10	ı	0,22; 0,33 мкФ	0,1; 0,15 мкФ	0,047 0,1 мкФ	0,015 0,033 мкФ	6800 пФ; 0,01 мкФ	470 6800 пФ	-
		1	-	0,15 0,33 мкФ	0,1; 0,15 мкФ	0,047; 0,068 мкФ	0,015; 0,022 мкФ	0,01 мкФ	-
		2	-	0,33; 0,47 мкФ	0,15; 0,22 мкФ	0,068; 0,1 мкФ	0,033; 0,047 мкФ	0,015 0,022 мкФ	-
Б26-1 Б26-2 (Рис.1)		3	-	0,47 1,0 мкФ	0,33; 0,47 мкФ	0,1 0,22 мкФ	0,047; 0,068 мкФ	0,033; 0,047 мкФ	3300пФ 0,033 мкФ
	15	4	-	1,0 1,5 мкФ	0,47; 0,68 мкФ	0,22; 0,33 мкФ	0,1; 0,15 мкФ	0,068; 0,1 мкФ	0,047 0,1 мкФ
		5	-	2,2; 3,3 мкФ	1,0; 1,5 мкФ	0,47; 0,68 мкФ	0,22; 0,33 мкФ	0,15 0,33 мкФ	0,1 0,33 мкФ
Б26-3 (Рис.1)		-	-	4,7; 6,8 мкФ	2,2; 3,3 мкФ	1,0; 1,5 мкФ	0,47; 0,68 мкФ	0,33; 0,47 мкФ	0,22; 0,33 мкФ
Б26-3 (Рис.3)		-	-	0,68; 1,0 мкФ	0,33; 0,47 мкФ	0,15; 0,22 мкФ	0,068; 0,1 мкФ	6800 пФ; 0,047 мкФ	-
		3	-	0,47; 0,68 мкФ	0,22; 0,33 мкФ	0,068 0,15 мкФ	0,047; 0,068 мкФ	0,033 мкФ	3300 пФ 0,022 мкФ
Б26-1 (Рис.1)	25	4	-	1,0; 1,5 мкФ	0,33 0,68 мкФ	0,22; 0,33 мкФ	0,068; 0,1 мкФ	0,047; 0,068 мкФ	0,033 0,068 мкФ
		5	-	2,2; 3,3 мкФ	0,68 1,5 мкФ	0,33; 0,47 мкФ	0,15 0,33 мкФ	0,1 0,33 мкФ	0,1 0,22 мкФ
Б26-3 (Рис.1)		-	-	3,3; 4,7 мкФ	1,5; 2,2 мкФ	0,68; 1,0 мкФ	0,47мкФ	0,33 мкФ	0,15 0,33 мкФ

Примечание – Промежуточные значения номинальных емкостей фильтров по ГОСТ 28884, ряд Е6.

				Н	90					
Вариант	I _{HOM}	Типо- размер		Номинальное	напряжение, В					
			32	50	100	250				
Б26-1 Б26-2 (Рис.2)	10	-	1,01,5 мкФ	0,330,68 мкФ	0,068 0,22 мкФ	0,0150,047 мкФ				
		1	-	0,68; 1,0 мкФ	0,33; 0,47 мкФ	0,0470,1 мкФ				
Б26-1		2	-	1,02,2 мкФ	0,47; 0,68 мкФ	0,1; 0,15 мкФ				
Б26-2	526-2	3	-	2,2; 3,3 мкФ	0,681,5 мкФ	0,22; 0,33 мкФ				
(Рис.1)		4	-	3,36,8 мкФ	1,5; 2,2 мкФ	0,33; 0,47 мкФ				
		5	-	6,822 мкФ	2,2 4,7 мкФ	0,471,5 мкФ				
Б26-3 (Рис.1)						-	-	1022 мкФ	3,36,8 мкФ	1,02,2 мкФ
Б26-3 (Рис.3)		-	-	2,24,7 мкФ	0,471,5 мкФ	0,150,33 мкФ				
		3	-	2,2; 3,3 мкФ	0,471,0 мкФ	0,22; 0,33 мкФ				
Б26-1 (Рис.1)		4	-	3,3; 4,7 мкФ	1,02,2 мкФ	0,33; 0,47 мкФ				
	25	5	-	4,715,0 мкФ	2,24,7 мкФ	0,471,0 мкФ				
Б26-3 (Рис.1)		-	-	6,815 мкФ	2,24,7 мкФ	1,0; 1,5 мкФ				

Примечание – Промежуточные значения номинальных емкостей фильтров по ГОСТ 28884, ряд Е6

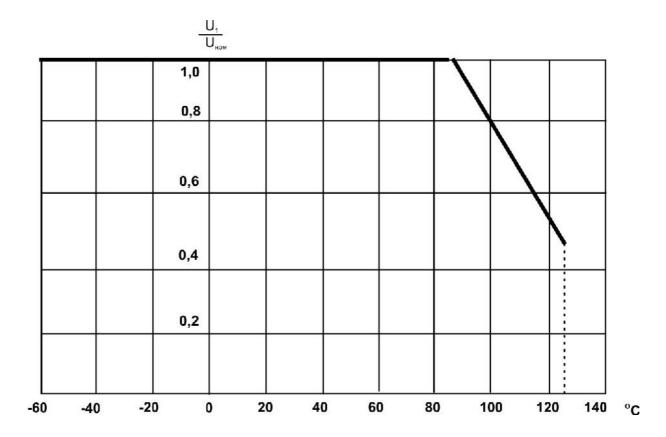
Вносимое затухание фильтров Б26-1, 2

Номинальная			Вно		тухание, частоте,		енее		
емкость	0,01	0,1	1,0	10	30	100	300	1000	10 000
47 пФ	-	-	-	-	-			7	
56 пФ	-	-	-	-	-		5	8	1
68 пФ	-	-	-	-	-	2		10	1
82 пФ	-	-	-	-	-		7	12	25
100; 120 пФ	-	-	-	-	-	3	10	20	
150; 180 пФ	-	-	-	-	3	8	15	21	
220; 270 пФ	-	-	-	-	4	10	17	22	35
330; 390 пФ	-	-	-		_	11	20	25	
470; 560 пФ	-	-	-	3	5	12	22	27	40
680; 820 пФ	-	-	-	4	10	15	25	35	1
1000; 1200 пФ	-	-	-	6	15	20	30		
1500; 1800 пФ	-	-	-	7	16	22	32		
2200; 2700 пФ	-	-	2	9	17	25	33	40	
3300; 3900 пФ	-	-		12	20	30	35		50
4700; 5600 пФ	-	-	3	15		32	40	45	
6800; 8200 пФ	-	-		20	25	35	40	45	
0,01; 0,012 мкФ	-	-	_	21		37	45		
0,015; 0,018 мкФ	-	-	4	23	30	40		55	55
0,022; 0,027 мкФ	-	-	5	25	32	42	48	50	00
0,033; 0,039 мкФ	-	-	6	30	35			58	60
0,047; 0,056 мкФ	-	-	8	33		45	50		
0,068; 0,082 мкФ	-	3	12	35	40			60	65
0,1; 0,15 мкФ	2	8	20	40	45	50	55	65	1
0,22 мкФ	3	10	25	43	50	52	58	_	
0,33 мкФ	4	12	30	45		55	58	70	
0,47; 0,68 мкФ	6	14	33	50	52	58	60		1
1,0; 1,5 мкФ	9	25		53		60	65	1	
2,2; 3,3 мкФ	15	26	45	55	- 58	65	70	1	75
4,7 мкФ	20	33	50	60	65	70	70		
6,8; 10 мкФ	25	40	52	65	70			75	
15 мкФ	35	47	57						
22 мкФ	40	50	60	70		75			

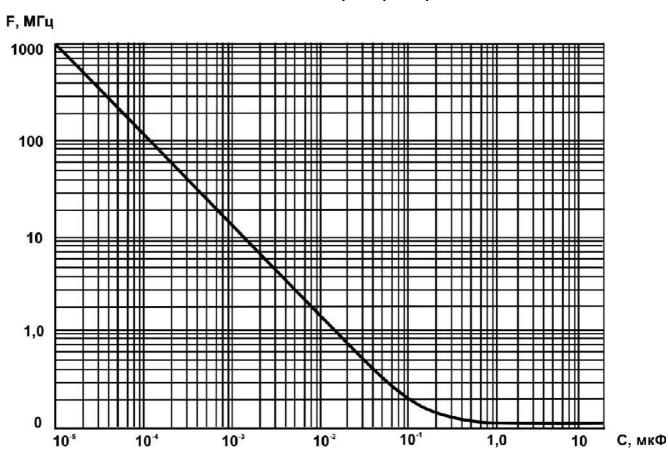
Вносимое затухание фильтров Б26-3, Іном =15 А

Номинальная			Δ	, дБ, не м	ленее, на	частоте,	МГц		
емкость	0,3	1,0	3,0	10	30	50	100	300	1 000
680; 820 пФ	_	_	_	3	10	15	30	45	50
1000; 1200 пФ	_	_	_	6	15	22	38	50	52
1500; 1800 пФ	_	_	_	10	20	30	42	52	55
2200; 2700 пФ	_	_	_	12	25	35	45	55	60
3300; 3900 пФ	_	_	3	15	35	45	55	60	
4700; 5600 пФ	_	_	5	23	40	52	63	65	70
6800; 8200 пФ	_	_	8	28	45	56	66		
0,01 мкФ	_	3	10	35	50	62			
0,015; 0,018 мкФ	_	5	12	40	55	63		70	
0,022; 0,027 мкФ	_	7	15	48	60	70]		
0,033 мкФ	_	10	20	50	65	70			
0,047 мкФ	3	11	25	62					00
0,068 мкФ	6	40	30	65]			75	60
0,1; 0,15 мкФ	7	12	35	68]				
0,22 мкФ	15	30	50	75			70		
0,33 мкФ	18	40	60	80					
0,47; 0,68 мкФ	20	45	65		75	75		70	
1,0 мкФ	25	60	70]					
1,5 мкФ	28	65	70	85					
2,2; 3,3 мкФ	30	70	75	1					55
4,7 мкФ	53	80	75					65	
6,8 мкФ	60	8	0	0.5	1				60
10 мкФ	65			85			•		
15 мкФ	70	8	5	80	80		75	70	
22 мкФ	85	1		8	30	7	75]	

Вносимое затухание фильтров Б26-3, Іном =25 А

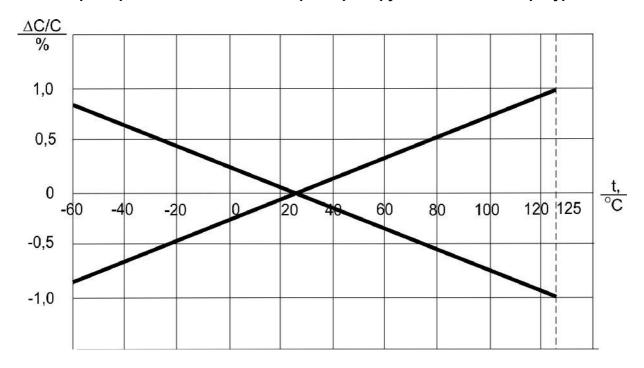

Номинальная	А, дБ, не менее, на частоте, МГц											
емкость	0,3	1,0	3,0	10	30	50	100	300	1 000			
0,15 мкФ	10	12	15	50		7.5		_	'O			
0,22 мкФ	12	15	20	55		75		'	0			
0,33 мкФ	15	18	25	60			7	5				
0,47 мкФ	18	20	30	60	75	80						
0,68 мкФ	20	25	40	65			Č					
1,0 мкФ	25	30	50	70	80		8	5				
1,5 мкФ	27	32	55	72	7	5						
2,2мкФ	30	35	60	75			1		7.5			
3,3 мкФ	32	40	70			.0	7	5	75			
4,7 мкФ	36	50	7.5		٥	0						
6,8 мкФ	40	60	75	80					70			
10 мкФ	42	70	80		_	· F	70	70	70			
15 мкФ	45	75	85		/	75	70	6	55			

Примечания

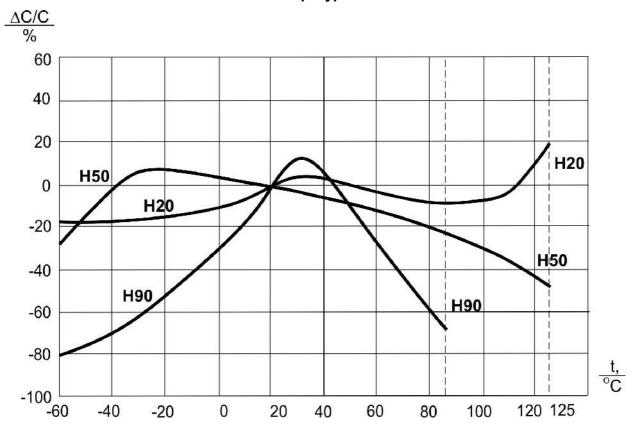

ГИРИКОНД	
т игикопд	

¹ Знак «-» означает, что вносимое затухание меньше 2 дБ.

² Вносимое затухание фильтров Б25-4 в диапазоне частот свыше 1000 до 10 000 МГц включительно не менее значений, указанных в таблице для частоты 1000 МГц.



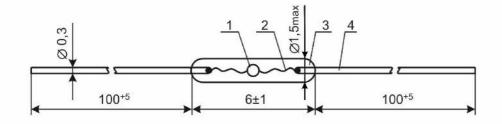
Типовая зависимость частоты среза фильтров от емкости


гириконд _____

Характер зависимости емкости фильтров группы МП0 от температуры

ΔС - относительное изменение емкости

Характер зависимости емкости фильтров групп H20, H50 и H90 от температуры


 ΔC – относительное изменение емкости

Тип	Номинальное сопротивление	Постоянная "В", К	Макс. мощность рассеяния, Вт	Рабочая темпера- тура,°С	Конструкция
<u>TP-1</u>	15; 33 кОм ±10% (25°C)	32003600 (-600)°C 34703900 (0150)°C	0,05	- 60 +155	Бусинковые
<u>TP-2</u>	1,0; 2,2; 15; 33; 100; 470; 1000 кОм ±20% (25°C)	32003600 (-600)°C 22704580 (0155)°C	0,02	- 60 +155	Бусинковые
<u>TP-4</u>	1,0 кОм ±20% (25°C)	16001960 (0+200)°C	0,09	- 60 +200	Бусинковые
	102200 Ом ±20% (25°С)		0,5; 1,2		
<u>TP-15</u>	4,71000 Ом ±20% (25°С)	30004000 (-25155)°C	1,6	- 25 +155	Дисковые, выводные
	2,2470 Ом ±20% (25°С)		2,2		
<u>TP-16</u>	1,0330 Ом	26504000 (-600)°C 29003900 (0155)°C	0,85,4	- 60 +125	Дисковые, выводные

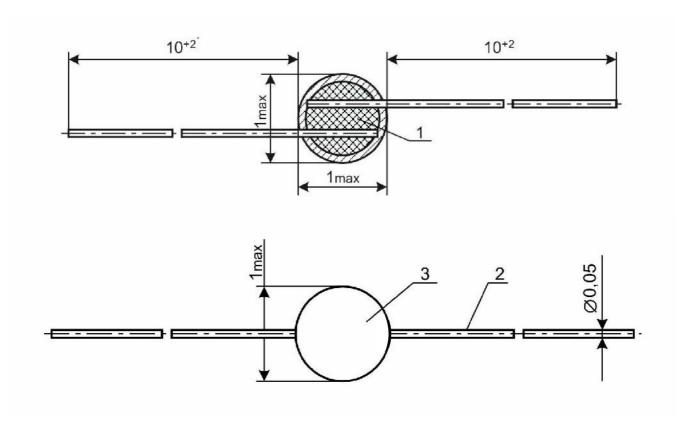
Технические условия: ОЖО.468.224 ТУ. Категория качества "ВП".

Предназначены для работы в цепях постоянного и переменного токов частотой до 1000 Гц для измерения и регулирования температуры; для температурной компенсации элементов электрической цепи, а также в схемах измерения скорости потоков жидкостей и газов и регулирования уровня жидкостей и сыпучих тел.

Конструкция: остеклованные, монолитные, защищенные, изолированные.

- 1 термочувствительный элемент
- 2 платиновый вывод
- 3 корпус
- 4 никелевые выводы

Масса, не более, 0,25 г


Обозначение при заказе: терморезистор TP-1-15 кОм±10% В ОЖО.468.224 ТУ.

Наименование параметра	Значение параметра			
Номинальное сопротивление при температуре 25°C, R _н , кОм	15	33		
Допускаемое отклонение сопротивления, %	±1	10		
Постоянная В, К, при температурах: - от -60 до 0°C	3200	. 3600		
- от 0 до 155°C	3470 3830	3550 3900		
Температурный коэффициент сопротивления при температуре 25°C, % на 1°C	-4,1±0,2	-4,2±0,2		
Максимальная мощность рассеяния, при температуре 25°C, мВт	50			
Допустимая мощность рассеяния при температуре 155°C, мкВт	30	30		
Коэффициент рассеяния, не менее, мВт/°С	0,4			
Коэффициент энергетической чувствительности, не менее, мВт	оэффициент энергетической чувствительности, не менее, мВт 0,1			
Постоянная времени, не более, с	10)		
Интервал рабочих температур, °C	-60 155			
Минимальная наработка, ч 20 000				
Изменение сопротивления ТР в течение минимальной наработки, %	±5			
Срок сохраняемости, лет	15			
Климатическое исполнение	В			

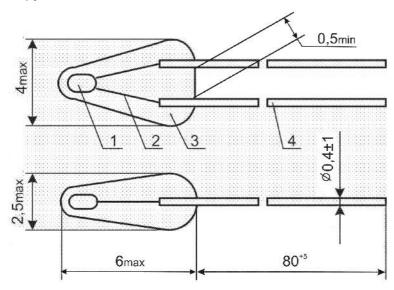
Технические условия: ОЖО.468.224 ТУ. Категория качества "ВП".

Предназначены для работы в цепях постоянного и переменного токов частотой до 1000 Гц для измерения и регулирования температуры; для температурной компенсации элементов электрической цепи, а также в схемах измерения скорости потоков жидкостей и газов и регулирования уровня жидкостей и сыпучих тел.

Конструкция: остеклованные, монолитные, защищенные, изолированные.

Масса, не более, 0,007 г

- 1 термочувствительный элемент
- 2 платиновый вывод
- 3 корпус


Обозначение при заказе: терморезистор TP-2-15 кОм±20% В ОЖО.468.224 ТУ.

Наименование параметра	Значение параметра						
Номинальное сопротивление при температуре 25°C, R _н , кОм	1,0	2,2	15	33	100	470	1000
Допускаемое отклонение сопротивления, %		•		±20			
Температурный коэффициент сопротивления при температуре 25°C, % на 1°C	-2,9±0,35	-3,4±0,35	-4,1±0,2	-4,2±0,2	-4,2±0,35	-4,6±0,55	-4,8±0,35
Постоянная В, К, при температурах:		•		•		•	•
- от -60 до 0°C			3	200 360	00		
- от 0 до 155°C	2270 2900	2700 3330	3470 3830	3550 3900	3420 4040	3600 4580	3950 4580
Максимальная мощность рассеяния, при температуре 25°C, мВт				20			
Допустимая мощность рассеяния при температуре 155°C, мкВт				10			
Коэффициент рассеяния, не менее, мВт/°С				0,1			
Коэффициент энергетической чувствительности, не менее, мВт				0,03			
Постоянная времени, не более, с				5			
Интервал рабочих температур, °C				-60 155			
Минимальная наработка, ч				20 000			
Изменение сопротивления ТР в течение минимальной наработки, %	±10						
Срок сохраняемости, лет				15			
Климатическое исполнение				В			

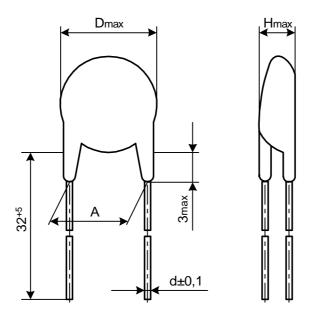
Технические условия: ОЖО.468.254 ТУ. Категория качества "ВП". АДПК.434121.016 ТУ.

Предназначены для работы в цепях постоянного и переменного токов частотой до 1000 Гц для измерения и регулирования температуры, для использования в сигнализаторах уровня жидкости, а также для температурной компенсации элементов электрической цепи

Конструкция: остеклованные, монолитные, защищенные, изолированные.

- 1 термочувствительный элемент
- 2 платиновый вывод
- 3 корпус
- 4 никелевые выводы

Масса, не более: 0,3 г.


Обозначение при заказе: Терморезистор ТР-4 ОЖО.468.254 ТУ. Терморезистор ТР-4 АДПК.434121.016 ТУ.

Наименование параметра	Значение параметра
Номинальное сопротивление при температуре 25°C, R _н , кОм	1,0
Допускаемое отклонение сопротивления, %	±20
Постоянная В, К	1600 1960
Температурный коэффициент сопротивления при температуре 25°C, % на 1°C	-1,82,2
Максимальная мощность рассеяния, при температуре 25°C, мВт	90
Допустимая мощность рассеяния при температуре 250°C, мВт	0,4
Коэффициент рассеяния, не менее, мВт/°С	0,3
Коэффициент энергетической чувствительности, не менее, мВт	0,1 5
Постоянная времени, не более, с	10
Интервал рабочих температур, °C	-60 250
Минимальная наработка, ч	20 000
Изменение сопротивления ТР в течение минимальной наработки, %	±10
Срок сохраняемости, лет	15
Климатическое исполнение	В

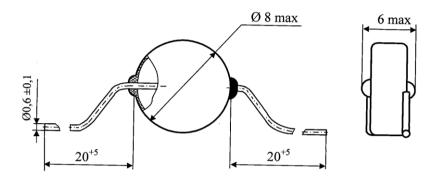
Технические условия: АДПК.434121.012 ТУ

Предназначены для эксплуатации в качестве встроенных элементов внутри комплектных изделий для ограничения пусковых токов (в частности – во вторичных источниках питания) в электрических цепях постоянного и переменного токов частотой до 1000 Гц.

Конструкция: дисковые с однонаправленными проволочными выводами, неизолированные

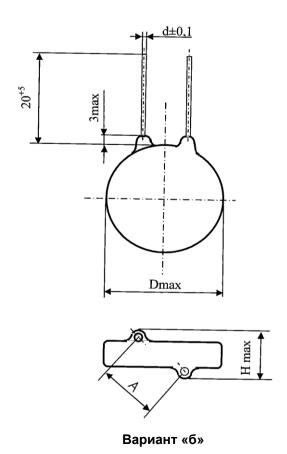
Типоразмер	Макс. мощность		Масса, г			
терморезистора	рассеяния, Р, Вт	D	Н	d	Α	не более
1	0,5	7	6	0,4	2,5±1,0	0,7
'	1,2	,	O	0,6	2,0±1,0	0,7
2	1,6	11	6	0,8	7,5±1,0	1,7
3	2,2	15	6	0,8	7,5±1,0	3,6

Обозначение при заказе: терморезистор ТР-15-330 Ом -1,2 Вт АДПК.434121.012 ТУ


Основные параметры (наиболее широко используемые типономиналы)	Номинальное сопротивление при 25°С, R _н , Ом 15 47 100 330 470 1000 1500	Сопротивление при максимальной мощности рассеяния, R _{Рмакс} , Ом, не более 0,45 1,1 1,7 3,0 4,3 9,2 13,8	Номинальное сопротивление при 25°С, R _н , Ом 10 15 22 47 100 470 680	Сопротивление при максимальной мощности рассеяния, R _{Рмакс} , Ом, не более 0,3 0,36 0,53 0,81 0,9 4,3 6,3	Номинальное сопротивление при 25°С, R _н , Ом 2,2 3,3 4,7 10 15 47 100	Сопротивление при максимальной мощности рассеяния, R _{Рмакс} , Ом, не более 0,066 0,1 0,14 0,24 0,26 0,43 0,9	
Допускаемое отклонение сопротивления, ΔR , %				±20			
Максимальная мощность рассеяния, Р _{макс} , Вт (25 °C)	0,5	1,2		1,6		2,2	
Постоянная В, К (в интервале температур -25+155 °C)		3000 4000					
Температурный коэффициент сопротивления, α, %/°С (при 25 °C)		-3,374,5					
Интервал рабочих температур, °C			-25	+155			
Допустимая мощность рассеяния, Р _{доп} , Вт (при температуре 155 °C)			0,2	25 Р _{макс}			
Коэффициент рассеяния, Н, мВт/°С	3	7		10		13	
Постоянная времени, τ , с	100	50		70		110	
С конденсатора *		50		150		300	
Наработка, t _н , ч				15000			
Изменение сопротивления в течение наработки, %	±30						
Интенсивность отказов (в течение наработки), 1/ч	2·10 ⁻⁸						
Срок сохраняемости, лет	15						
Климатич. исполнение			УХЛ 2.1 пс	FOCT 15150-69			

^{*} Указано максимальное значение емкости сглаживающего конденсатора, заряжаемого до напряжения 350 U при использовании TP-15 для ограничения пусковых токов во вторичных импульсных источниках электропитания (ВИЭП).

Технические условия: АЖЯР.434121.003 ТУ.


Предназначены для ограничения пусковых токов, измерения и регулирования температуры, а также для температурной компенсации элементов электрических цепей постоянного и переменного токов частотой до 1000 Гц с напряжением до 380 В.

Конструкция: дисковые с однонаправленными проволочными выводами, защищенные неизолированные.

Масса – не более 0,7 г

Вариант «а»

Типоразмер	D _{max} ,	H _{max} ,	C	d, мм	,	А, мм	Масса, г,			
терморезистора варианта «б»	ММ	ММ	номин.	пред. откл.	номин.	пред. откл.	не более			
1	8	6	0,6		2,5		0,7			
2	15	7	0.0	0.8	0.8	7	. 0.4	7,5		1,7
3	20	0	0,8	± 0,1	10	± 1	3,6			
4	28	8	1,0		13		8,0			

Вариант терморе- зистора	Типо- размер терморе- зистора	Номинальное сопротивление R _н * терморезисторов при температуре 25 °C, Ом	Максимальная мощность рассеяния Р _{мах} при температуре 25 °C,	Температурный коэффициент сопротивления (ТКС)** при 25 °C, %/°C	Постоянная В** в интервале температур от 0 °C до 155 °C, К
		10	0.0	-3,27	2 900
а	_	15	0,8	-3,27	2 900
		15		-3,27	2 900
		47		-3,60	3 200
	1	100	1,2	-3,94	3 500
	'	150	1,2	-3,94	3 500
		220		-4,27	3 800
		330		-4,39	3 900
		15		-3,60	3 200
		47	4.0	-3,94	3 500
	2	100	1,6	-4,39	3 900
б		150		-4,39	3 900
		3,3		-3,27	2 900
		4,7		-3,27	2 900
		10		-3,60	3 200
	3	15	2,2	-3,94	3 500
		33		-4,39	3 900
		47		-4,39	3 900
		100		-4,39	3 900
		1,0		-3,27	2 900
	4	1,5	5,4	-3,27	2 900
		2,2		-3,27	2 900

 $^{^*}$ Допускаемое отклонение — \pm 20 % ** Допускаемое отклонение — \pm 5 %

Примечание: Постоянная В в интервале температур минус 60 °C ... 0 °C от 2650 до 4000.

Обозначение при заказе: терморезистор ТР-16б-3-47 Ом АЖЯР.434121.003 ТУ

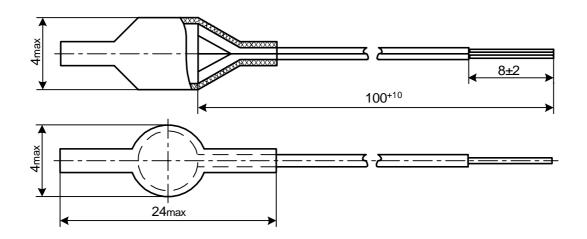
Интервал рабочих температур, °С	-60 +125
Гарантийный срок эксплуатации, лет	25
Гарантийный срок хранения, лет	25

Значения коэффициентов рассеяния и постоянной времени

Максимальная мощность рассеяния Р _{мах} при температуре 25°C, Вт	Коэффициент рассеяния, мВт/°С, не менее	Постоянная времени, с, не более
0,8	8	50
1,2	7	70
1,6	10	100
2,2	15	110
5,4	25	200

Значения сопротивления терморезисторов при максимальном токе

Вариант терморе- зистора	Типоразмер терморе- зистора	Номинальное сопротивление R _н терморезисторов при температуре 25°C, Ом	Максимальный ток I _{мах} терморезисторов при температуре 25 °C, A	Сопротивление R терморезисторов при максимальном токе I _{max} , Ом	
		10	0,9	1,0	
а	_	15	0,7	1,5	
		15	1,4	0,6	
		47	0,9	1,4	
	4	100	0,7	2,2	
	1	150	0,6	3,3	
		220	0,6	3,5	
		330	0,5	4,7	
		15		0,46	
		47	1,3	1,05	
	2	100	1,1	1,45	
б		150	0,7	2,2	
		3,3	4,0	0,14	
		4,7	3,3	0,2	
		10	2,7	0,3	
	3	15	2,6	0,33	
		33	2,4	0,47	
		47	1,8	0,67	
		100	1,2	1,44	
		1	17	0,02	
	4	1,5	13	0,03	
		2,2	10	0,05	


	Предохранители в системах защиты по току и напряжению								
Тип	Номинальное сопротив- ление, Ом	T _{nep.} , °C	Темпера- турный коэфф. сопротивления, не менее, %/°C	Макси мально напряжен В	е	Ток опроки- дывания, мА	Номи- нальный ток, мА	Ток сраба- тывания мА	I IIVCKO-
<u>ТРП-19</u>	2701500	60±10	12	300		1030	515	1442	0,1
ТРП-27	101500	120±10	1213	6030	0	26300	15180	20250	0,10,6
	Нагревательные элементы								
Тип	Номинальное сопротив- ление, Ом	T _{пер} , °C	сопротивле не менее, ^с (в интерв			дельное ряжение, В	Кратное изменен сопротивлие мен (в интернати)	ния пения, ее зале	Максималь- ный пусковой ток, мА
ТРП-24	100400	-	10 (7090	(7090° C) 35 10 ² (2		10 ² (251	00° C)	-	
<u>ТРП-24М</u>	15 00030000	-	10 (2550° C)			35	3 (525° 0 (2550		-
ТРП-29	180±25%; 820±25%	120±10	15 (13015	50° C)	3	4; 115	10 ² (251	40° C)	300

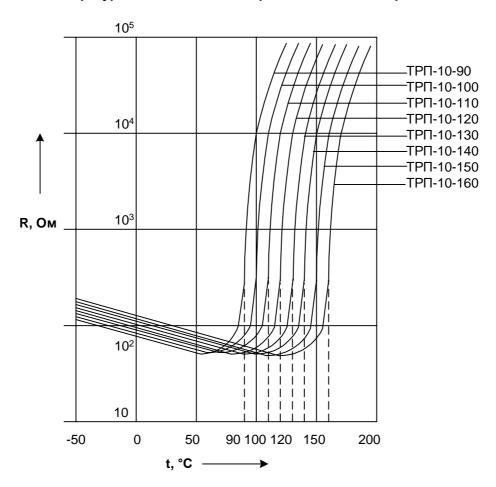
Технические условия: ТЦАФ.434121.026 ТУ

Предназначены для эксплуатации в качестве встроенных элементов внутри комплектных изделий термочувствительных малоинерционных датчиков в системе встроенной тепловой защиты электрических машин.

Терморезисторы изготавливают одного типа восьми вариантов в зависимости от классификационной температуры в соответствии с таблицей.

Конструкция: дисковый элемент, изолированный трубкой с изолированными гибкими выводами

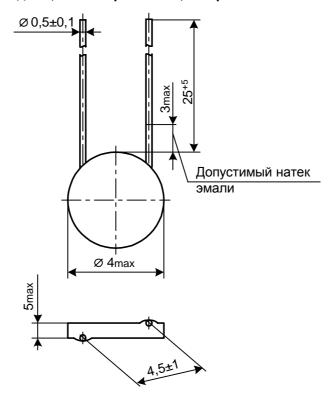
Таблица

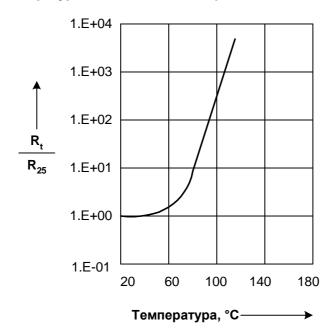

Вид терморезистора	Классификационная температура, Т _{кл} , °C
ТРП-10-90	90
ТРП-10-100	100
ТРП-10-110	110
ТРП-10-120	120
ТРП-10-130	130
ТРП-10-140	140
ТРП-10-150	150
ТРП-10-160	160

Обозначение при заказе: терморезистор ТРП-10-140 ТЦАФ.434121.026 ТУ

ГИРИКОНД _

Номинальное сопротивление при температуре 25 °C и при напряжении 2,5 B, R _н	50 150 Ом
Сопротивление при температуре на 5 °C ниже классификационной температуры и при напряжении 2,5 В, н	не более 550 Ом
Сопротивление при температуре на 5 °C выше классификационной температуры и при напряжении 2,5 В, н	не менее 1330 Ом
Сопротивление при температуре на 15 °C выше классификационной температуры и при напряжении 7,5 В, н	не менее 4000 Ом
Постоянная времени в режиме нагрева, τ , не более	5 c
Кратность изменения сопротивления в интервале температ от 25 °C до температуры на 15 °C выше классификационной	
ТКС в интервале от температуры на 5 °С ниже до температу на 5 °С выше классификационной температуры, α , не менес	
Наработка, t _н	20000 ч
Интенсивность отказов, (в течение наработки) $\lambda_{\scriptscriptstyle 9}$, не более	2·10 ⁻⁸ 1/4
Срок сохраняемости, не менее	15 лет
Масса, макс	0,8 г
Климатическое исполнение	УХЛ 3.1 по ГОСТ 15150-69


Температурная зависимость сопротивления позистора ТРП-10

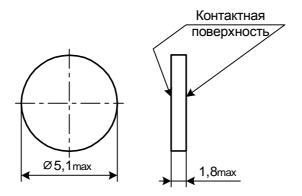

Технические условия: АДПК.434121.006 ТУ

Предназначены для эксплуатации в качестве встроенных элементов внутри комплектных изделий для защиты от перегрузок по току и напряжению в цепях постоянного и переменного токов частотой до 400 Гц.

Конструкция: дисковые, с выводами, неизолированные, негерметичные

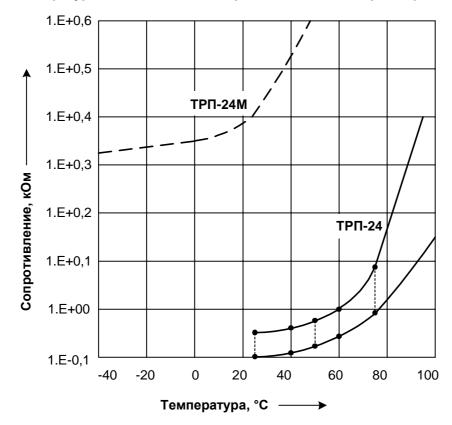
Температурная зависимость сопротивления позистора ТРП-19

Обозначение при заказе: терморезистор ТРП-19 – 270 Ом АДПК.434121.006 ТУ


ГИРИКОНД ___

Параметры	Значения параметров			В	
Номинальное сопротивление при температуре 25°C, R _н , Ом	270	470	750	1000	1500
Допускаемое отклонение сопротивления, $\Delta R_{25},~\%$	±30				
Ток опрокидывания при температуре 25°C, I _{OПР} , мА	30 25 15 12				10
Номинальный ток, I _{НОМ} , мА	15 13 8 6				5
Кратность изменения сопротивления в интервале температур (25-100) °С, К, не менее	10 ²				
Температурный коэффициент сопротивления в интервале температур (70-90) °C, α , %/°C	12				
Температура переключения, Т _{перекл} , °С	60±10				
Максимальное напряжение, U _{макс} , В	300				
Наработка, t _н , ч	20000				
Интенсивность отказов в течение наработки, λэ, 1/ч, не более	2·10 ⁻⁸				
Срок сохраняемости, лет, не менее	12				
Климатическое исполнение	УХЛ 4.2 по ГОСТ 15150-69			0-69	
Масса, г, макс	0,5				

Технические условия: АЖЯР.434121.002 ТУ


Предназначены для эксплуатации в качестве нагревательных элементов и датчиков температуры в вакуумных резонаторах – термостатах, в электронагревателях с автоматическим регулированием температуры в цепях постоянного тока или переменного тока частотой до 50 Гц.

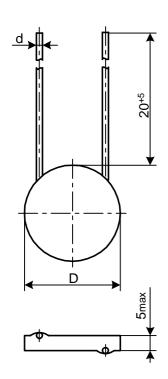
Конструкция: дисковые, безвыводные, неизолированные, негерметизированные, незащищенные

Пригодны для эксплуатации только в составе герметизированной аппаратуры.

Температурные зависимости сопротивления позисторов серии ТРП-24

Обозначение при заказе: терморезистор ТРП-24-3* - АЖЯР.434121.002 ТУ * Группа по сопротивлению

Технические характеристики

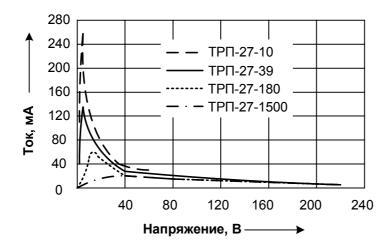

	Значения параметров			
Наименование характеристики	ТРП-24	ТРП-24М		
Номинальное сопротивление терморезисторов при температуре 25°C, R _н	от 100 до 400 Ом	от 15 до 30 кОм		
	1 группа - от 400 до 690 Ом			
Сопротивление терморезисторов	2 группа - от 0,691 до 1,200 кОм			
при температуре 72°С и импульсном	3 группа - от 1,201 до 2,000 кОм			
напряжении 13 В при длительности импульса не более 70 мс, R ₇₂ *	4 группа - от 2,001 до 3,500 кОм	- -		
William State Collect to Mic, 1172	5 группа - от 3,501 до 6,000 кОм			
	6 группа - св. 6,000 кОм			
Кратность изменения сопротивления в интервале температур, К:				
- от 5 до 25 °C	-	не менее 3		
- от 25 до 50 °C	-	не менее 10		
- от 25 до 100 °C	не менее 10 ²	-		
Температурный коэффициент сопротивления, в интервале температур, α				
- от 25 до 50 °C	-	не менее 10% на 1 °C		
- от 70 до 90 °C	не менее 10% на 1 °C	-		
Предельное постоянное напряжение, $V_{\text{пред}}$	35 B			
Температура переключения, Т _{ПЕРЕКЛ}	60 °C	30 °C		
Интервал рабочих температур	-60 90 °C	-60 50 °C		
Наработка, t _н	при температуре 90 °C - 40000 ч	50000 ฯ		
	при температуре 70 °C - 55000 ч			
Срок сохраняемости	25 лет			
Масса, макс	0,4 г			

 $^{^*}$ Допускается взаимное перекрытие смежных групп по сопротивлению в пределах до $\pm 10\%$ от значения сопротивления на соответствующей границе группы.

Технические условия: АДПК.434121.017 ТУ

Предназначены для эксплуатации в качестве встроенных элементов внутри комплектных изделий для защиты от перегрузок по току и напряжению в цепях постоянного и переменного токов частотой до 400 Гц.

Конструкция: дисковые, неизолированные, негерметизированные



1.E-0,1 20 60 100 140 180 Температура, °C →

Статическая вольт-амперная характеристика позисторов ТРП-27

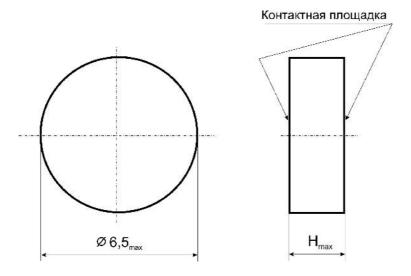
1.E+0,1

1.E+00

Обозначение при заказе: терморезистор ТРП-27-180 Ом АДПК.434121.017 ТУ

Основные параметры позисторов серии ТРП-27

Параметры		Значения параметров							
Номинальное сопротивление при температуре 25°C, R _н , Ом	10	18	39	62	91	180	300	470	1500
Допускаемое отклонение сопротивления, $\Delta R_{25},~\%$	±25								
Максимальное напряжение, V _{макс} , В	60	60	220	265	265	265	300	300	300
Ток опрокидывания, I _{ОПР} , мА	300	250	125	100	80	50	40	30	26
Номинальный ток, I _{НОМ} , мА	180	150	80	60	50	30	24	18	15
Ток срабатывания, I _{СРАБ} , мА		350	170	140	110	70	55	40	35
Остаточный ток, I _{ОСТ} , мА, не более		40	15	10	10	10	5	4	4
Максимальный пусковой ток, А		0,6	1,0	1,0	0,4	0,2	0,2	0,2	0,1
Температура переключения, Т _{ПЕРЕКЛ} , °С	120±10								
Кратность изменения сопротивления в интервале температур (25-180) °C, K, не менее	1	10 ² 10 ³							
Температурный коэффициент сопротивления, в интервале температур (130-150) °C, α, %/°C, не менее		12		13					
Габариты									
диаметр, D, мм	6,8		4,8		12				
толщина, мм	5,0			5,0		5,0			
Выводы									
диаметр, d, мм	0,6±0,1								
длина, мм	25,0								
Масса, г, не более	1,0	1,0	1,0	1,0	1,0	0,6	0,6	0,6	1,8


Наработка, t_{H} 20000 ч Интенсивность отказов в течение наработки, λ_{3} , не более $2 \cdot 10^{-8}$ 1/ч Срок сохраняемости, не менее 12 лет Климатическое исполнение УХЛ 4.2 по ГОСТ 15150-69

Технические условия: АЖЯР.434121.004 ТУ. Категория качества "ВП" по ГОСТ РВ 20.39.411.

Предназначены для использования в качестве автостабилизирующих нагревательных элементов в цепях в цепях постоянного тока или переменного тока частотой до 400 Гц.

Конструкция: негерметизированные, незащищенные, неизолированные.

Терморезисторы изготавливают в климатическом исполнении, пригодном для эксплуатации только в составе герметизированной аппаратуры или герметизированных узлов (блоков) аппаратуры.

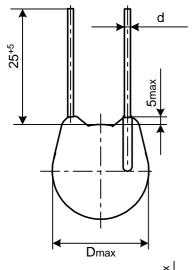
Номинальное сопротивление, Ом	Н _{тах} , мм	Масса, г, не более
180	1,7	0,6
820	2,3	0,8

Обозначение при заказе: терморезистор ТРП-29-820 Ом АЖЯР.434121.004 ТУ.

Номинальное сопротивление R _н при температуре 25°C, Ом	ре 25°C, Ом 180				
Допускаемое отклонение сопротивления, %	+2 5				
Кратность изменения сопротивления в интервале температур от 25°C до 140°C, не менее	10 ²				
Температурный коэффициент сопротивления (ТКС) в интервале температур (130 – 150) °C, % на 1°C, не менее	15				
Предельное напряжение постоянного или переменного тока частотой 400 Гц, В	34 115				
Пусковой ток, мА, не более	300				
Температура переключения, °С	120 ≔ 10				
Интервал рабочих температур, °С	-60 +70				
Гарантийный срок, лет	25				
Гарантийная наработка, ч	25 000				

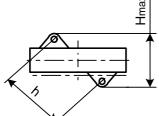
Тип	Классифи- кационное напря- жение, В	Допускаемое отклонение Икл., %	Допустимая амплитуда импульс-ного тока, А (8/20 мкс)	Допустимая рассеиваемая энергия импульса, Дж (8/20 мкс)	Коэффициент нелиней- ности, (не менее)	Раз- меры, мм
BP-4-1	2268	± 10	350; 500	0,512,3	15	Ø18
BP-4-2	2268	± 10	150; 200	0,180,76	15	Ø12
<u>BP-9a</u>	68680	± 5; ± 10; ± 20	500; 1500	2,344,9	2530	Ø19
<u>BP-96</u>	68560	± 10; ± 20	200; 700	0,7619,2	25	Ø12
ВР-9в	68430	± 10; ± 20	100; 150	0,262,5	2230	Ø8
<u>BP-10</u>	6882	± 10	5000	20; 25	22	Ø28
<u>BP-11</u>	330470	± 10	5000	84; 119	30	Ø28
<u>BP-12</u>	150470	± 10	5000	38119	2230	Ø28
<u>BP-13</u>	1233	± 10; ± 20	800; 1000	2,0 7,8	22	5,7x5; 8x6
<u>BP-14</u>	22; 24	± 10	1000; 2000	5,812,0	22	12x10; 15x15

Технические условия: ВР-4 – ОЖ0.468.253 ТУ – могут применяться взамен ВР-1


ВР-9 – ТЦАФ.434122.003 ТУ – могут применяться взамен СН2-1

BP-10 - ТЦАФ.434122.004 ТУ

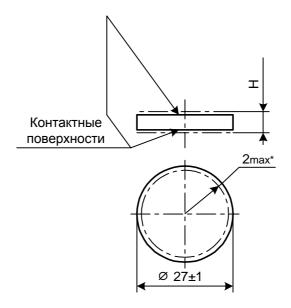
ВР-11 – ТЦАФ.434122.005 ТУ – могут применяться взамен CH2-2Б ВР-12 – ТЦАФ.434122.006 ТУ – могут применяться взамен CH2-2A


Предназначены для эксплуатации в качестве встроенных элементов внутри комплектных изделий для защиты элементов и узлов от импульсных перенапряжений в цепях постоянного, переменного и импульсного токов радиоэлектронной и электротехнической аппаратуры.

Конструкция: ВР-4 и ВР-9 дисковые с однонаправленными проволочными выводами, неизолированные, негерметичные

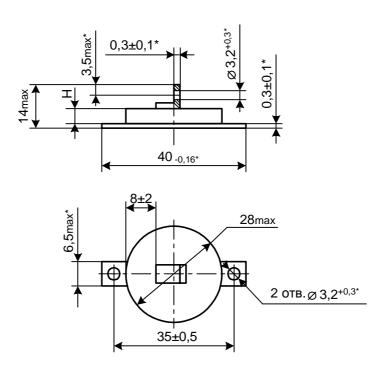
Варисторы BP-4 изготавливают одного типа двух вариантов - «1», «2».

Варисторы BP-9 изготавливают одного типа трех вариантов – «a», «б», «в».



Тип раристора	Вариант	Размеры, мм			
тип варистора	Тип варистора конструкции		d		
BP-4	1		0,8±0,1		
DF-4	2	8±3	0,6±0,1		
	"a"	10±3	0,8±0,1		
BP-9	"ნ"	6±2	0,8±0,1		
	"B"	3±1	0,6±0,1		

Обозначение при заказе: варистор BP-4-1-22 B ±10% ОЖ0.468.253 ТУ;


варистор BP-9a-120 B \pm 10% ТЦАФ.434122.003 ТУ; варистор BP-10-68 B \pm 10% ТЦАФ.434122.004 ТУ; варистор BP-11-330 B \pm 10% ТЦАФ.434122.005 ТУ; варистор BP-12-330 B \pm 10% ТЦАФ.434122.006 ТУ

ВР-10 и ВР-11 – дисковые, безвыводные с контактными поверхностями, неизолированные

^{*} Размер проверке не подлежит

ВР-12 – дисковые с ленточными выводами, неизолированные

^{*} Размер проверке не подлежит

Основные технические характеристики оксидно-полупроводниковых варисторов

ВР-4 ОЖ0.468.253 ТУ (ВР-1 ОЖ0.468.227 ТУ)

Тип	BP-4					
INII		Вари	ант 1	Вариант 2		
Классификационное напряжение	: (1 мА), В	22÷33	39÷68	22÷33	39÷68	
Допускаемое отклонение, U _{кл} , %	1		±	10		
Коэффиецент нелинейности, не м	менее		1	5		
поэффиецент нелипеиности, не менее		(u ₁ /u ₁₀ ≥0,86)				
Предельный импульсный ток, А		350	500	150	200	
Допустимая энергия рассеяния импульсов, Дж	8/20 мкс*	0,51÷0,91	1,30÷2,30	0,18÷0,36	0,47÷0,76	
Предельный импульсный ток, А		4	0	1	5	
Допустимая энергия рассеяния импульсов, Дж	2 мс*	4,0÷5,5	6,6÷11,2	1,0÷1,3	1,4÷2,3	
Габарити и размери ими	Диаметр, D, макс	18		12		
Габаритные размеры, мм	Толщина, Н, макс	3,0		3,0		
Масса, не более, г		6		6 3		

Однонаправленные проволочные вывода.

ВР-9 ТЦАФ.434122.003 ТУ (СН2-1 ОЖ0.468.171 ТУ)

Тип		BP-9						
		Вариант "а"		Вариант "б"		Вариант "в"		
Классификационное напряжение	(1 мА), В	68÷82	100÷680	68÷82	100÷560	68÷82	100÷430	
Допускаемое отклонение, U _{кл} , %		±5, ±1	0, ±20		±10,	±20		
Koodody a cupit no Flanciano in contra de la	401100	25-	<u></u> 30	2	5	22-	÷30	
Коэффиецент нелинейности, не м	иенее	(u ₁ /u ₁₀ ≥0,	91÷0,926)	(u ₁ /u ₁₀	≥0,91)	(u ₁ /u ₁₀ ≥0,	90÷0,926)	
Предельный импульсный ток, А		500	1500	200	700	100	150	
Допустимая энергия рассеяния импульсов, Дж	8/20 мкс*	2,30÷2,80	7,80÷44,9	0,76÷0,86	3,40÷19,2	0,26÷0,30	0,60÷2,50	
Предельный импульсный ток, А		40	80	15	30	6	10	
Допустимая энергия рассеяния импульсов, Дж	2 мс*	11,2÷13,7	17÷143	2,3÷2,9	10÷58,3	1,1÷1,3	2,7÷12	
Габаритино размеры мм	Диаметр, D, макс	19		12		8		
Габаритные размеры, мм	Толщина, Н, макс	5,0	6,5	5,0	6,5	5	,0	
Масса, не более, г		1	2	į	5	3,5		

Однонаправленные проволочные вывода.

^{* -} для двадцати импульсов.

^{* -} для двадцати импульсов.

ВР-10 ТЦАФ.434122.004 ТУ

Тип		BP-10
Классификационное напряжение (1 мА), В		68; 82
Допускаемое отклонение U _{кл} , %		±10
Коэффиецент нелинейности, не менее		22
(для интервала 1÷ 10 мА)	(u ₁ /u ₁₀ ≥0,90)	
Защитный коэффициент при 1-20 мА, макс	≤2,2	
Предельный импульсный ток, А	8/20 мкс*	5000
Допустимая энергия рассеяния импульсов, Дж	0/20 MKC	20; 25
Предельный импульсный ток, А	2,5 MC*	150
Допустимая энергия рассеяния импульсов, Дж	50; 60	
Facantillio pagazoni i MA	Диаметр, D, макс	28
Габаритные размеры, мм	Толщина, Н, макс	3,0
Масса, не более, г	10	

Безвыводная конструкция. * - для десяти импульсов.

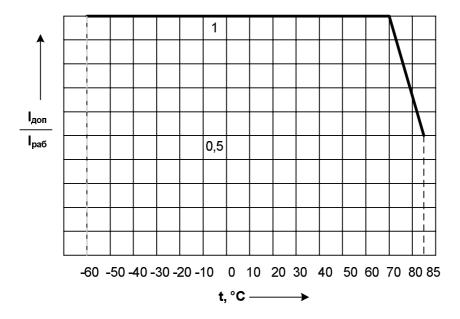
ВР-11 ТЦАФ.434122.005 ТУ (СН2-2Б ОЖ0.468.205 ТУ)

Тип	BP-11	
Классификационное напряжение (1 мА), В	330; 470	
Допускаемое отклонение, U _{кл} , %		±10
Коэффиецент нелинейности (не менее)	30	
	(u ₁ /u ₁₀ ≥0,926)	
Предельный импульсный ток, А	5000	
Допустимая энергия рассеяния импульсов, Дж	84; 119	
Предельный импульсный ток, А	150	
Допустимая энергия рассеяния импульсов, Дж	160; 225	
Габаритные размеры, мм	Диаметр, D, макс	28
п асаритные размеры, ми	Толщина, Н, макс	3,3
Масса, не более, г	10	

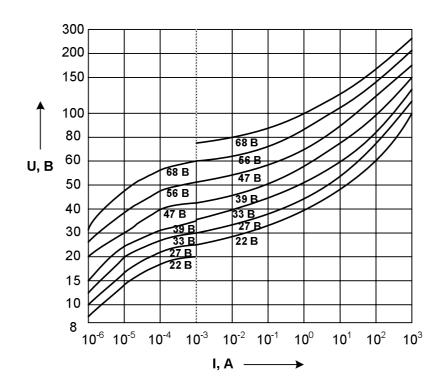
Безвыводная конструкция. * - для десяти импульсов. ** - 2,5 мс

ВР-12 ТЦАФ.434122.006 ТУ

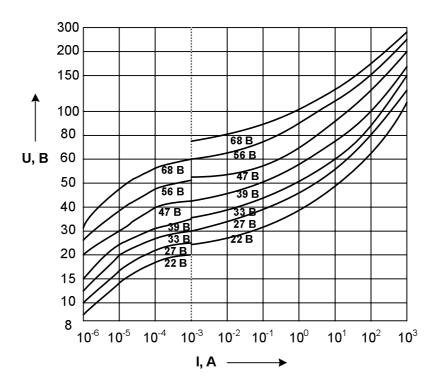
Тип		BP-12
Классификационное напряжение (1 мА), В	150÷470	
Допускаемое отклонение, U _{кл} , %		±10
Коэффиецент нелинейности (не менее)	22÷30	
поэффиецент нелинеиности (не менее)	(u ₁ /u ₁₀ ≥0,90÷0,926)	
Предельный импульсный ток, А	8/20 мкс*	5000
Допустимая энергия рассеяния импульсов, Дж	O/20 WKC	38÷119
Предельный импульсный ток, А	2,5 MC*	150
Допустимая энергия рассеяния импульсов, Дж	2,5 MC	73÷225
Габаритные размеры, мм	Диаметр, D, макс	28
пасаринные размеры, мім	Толщина, Н, макс	4,0
Масса, не более, г	20	

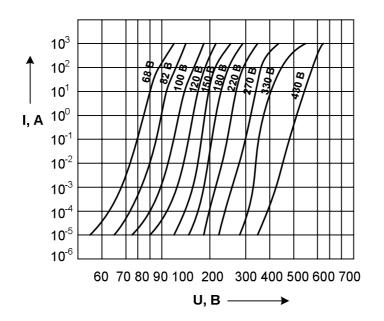

Примечание:

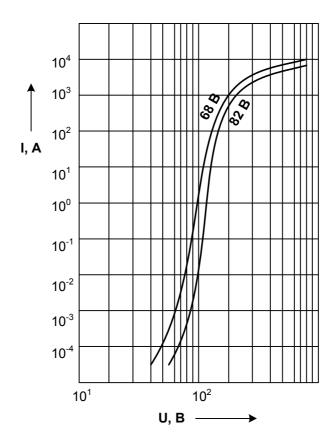
Предельное рабочее напряжение: на постоянном токе $-0.8~U_{\rm kn}$, на переменном токе $-0.65~U_{\rm kn}$.

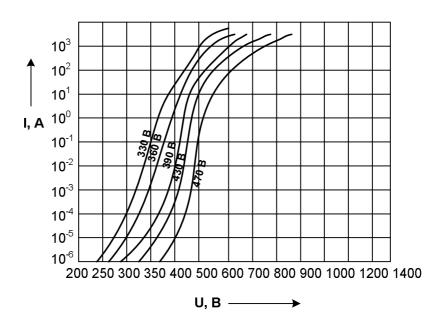

Технические характеристики	BP-4	BP-4 BP-9		BP-11	BP-12
Предельный рабочий ток (постоянный или переменный), І _{пред} , мА (мАэфф), макс	вар.1 - 0,1 вар.2 - 0,05	вар."а" - 0,1 вар."б" - 0,05 вар."в" - 0,03	0,1	0,1	0,1
Интервал рабочих температур, °C	-60 85				
Температурный коэффициент напряжения в интервале рабочих температур -60 85 °C, TKV, %/°C, макс	±C),5	0,1	0,1	0,1
Наработка в условиях и режимах, допускаемых ТУ, $t_{\scriptscriptstyle H}$, ч	10000				
Интенсивность отказов (в течение наработки), λ, 1/ч, макс	3·10 ⁻⁸				
Срок сохраняемости, лет, мин	10				
Климатическое исполнение	В 3.1 по ГОСТ 15150-69	УХЛ 5.1 по ГОСТ 15150-69	УХЛ 3.1 по ГОСТ 15150-69	УХЛ 3.1 по ГОСТ 15150-69	УХЛ 3.1 по ГОСТ 15150-69

Ленточные вывода. * - для десяти импульсов.

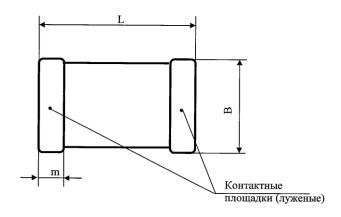

Зависимость предельно-допустимого тока варисторов ВР-4, ВР-9, ВР-10, ВР-11, ВР-12 от рабочих температур во всем интервале давлений

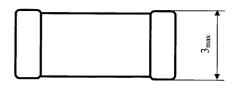

Вольт-амперная характеристика варистора ВР-4 (вариант 1)


Вольт-амперная характеристика варистора ВР-4 (вариант 2)

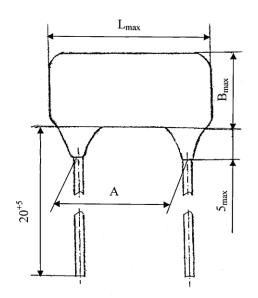

Вольт-амперная характеристика варистора ВР-9 (вариант «а», «б», «в»)

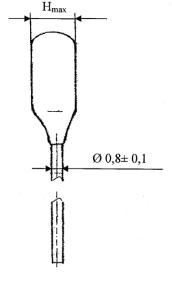
Вольт-амперная характеристика варистора ВР-10


Вольт-амперная характеристика варистора ВР-11 и ВР-12



Технические условия: АЖЯР.434122.001 ТУ.

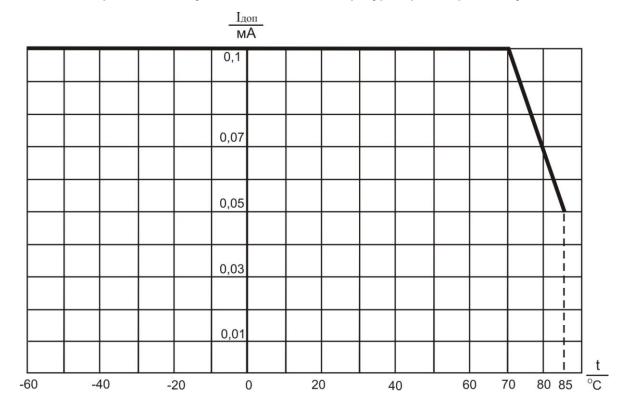

Предназначены для защиты элементов и блоков радиоэлектронной и электротехнической аппаратуры от перенапряжения в цепях постоянного, переменного и импульсного токов.


Конструкция: неизолированные; ВР-13 – незащищенные, ВР-14 – защищенные.

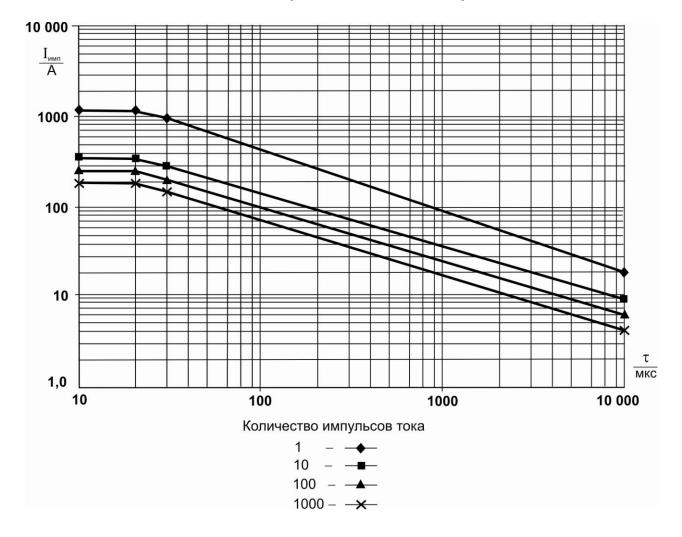
BP-13

BP-14

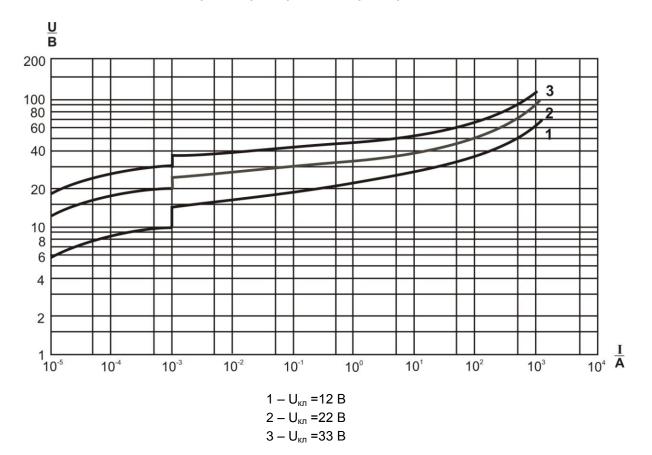
BP-13	L, мм		L, мм В, мм		т, мм	Масса, г,
	Номин.	Пред. откл.	Номин.	Пред. откл.	111, 14114	не более
а	8,0	+0,9 -0,5	6	+0,8 -0,4	0,5 – 1,5	1,0
б	5,7	+0,7 -0,5	5	+0,7 -0,4	0,1 – 1,0	0,5

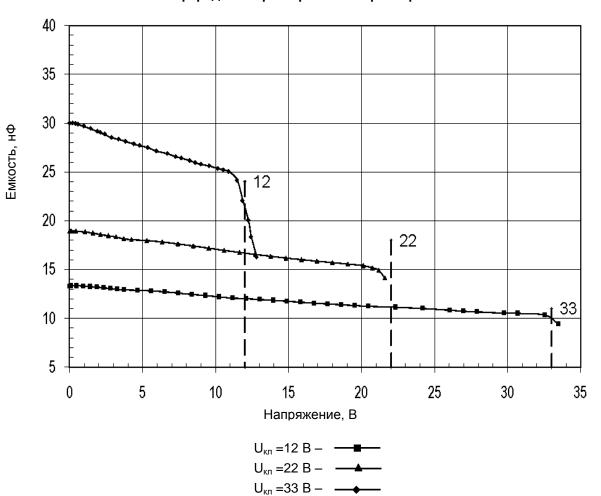

DD 44	L _{max} ,	B _{max} ,	H _{max} ,	А, мм		Масса, г,
BP-14	MM	MM	MM	Номин.	Пред. откл.	не более
а	15	15	6	10	14	5,0
б	12	10	5	8	±1	3,5

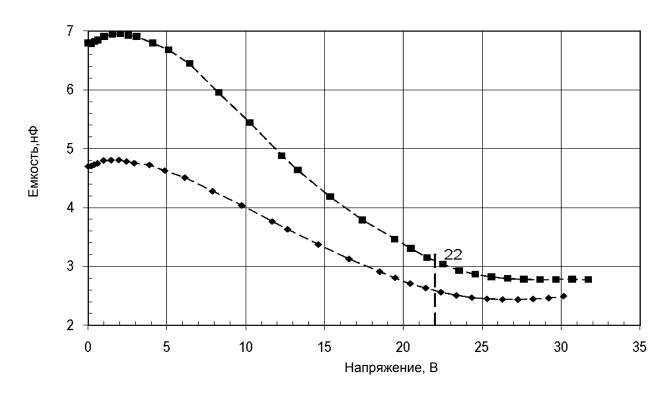
Основные параметры варисторов


	1								1	
Тип варистора		BP-13						BP-14		
Вариант варистора	а					б	а	б		
Классификационное напряжение U _{кл} при токе 1 мA, В	12	15	18	22	24	27	33	12	22;	; 24
Допускаемое отклонение U _{кл} , %		± 20			± ′	10		± 20	±	10
Защитный коэффициент $K_3 = U_{10A}/U_{1MA},$ не более	2,7	2,4	2,2	2,1	2,0	2,0	1,8	2,7	2,1	2,1
Коэффициент нелинейности α, не менее					2	22				
Допустимая амплитуда одиночного импульса тока длительностью 8/20 мкс, A, не более	1000				800	2000	1000			
Допустимая энергия рассеиваемая при воздействии одиночного импульса тока длительностью 2 мс, Дж, не более	3,6	4,2	5,0	5,8	6,2	7,2	7,8	2,0	10; 12	5,8; 6,2
Емкость варистора, мкФ (для BP-13 указана верхняя граница)	0,038	0,032	0,028	0,022	0,021	0,019	0,017	0,024	3,76 8,46	5,44 12,24
Температурный коэффициент напряжения ТКU, % на 1 °C				-0,05	50				-0,20)0
Интервал рабочих температур, °С					-60 .	+85				
Интенсивность отказов λ , не более, 1/ч: - в течение наработки t_{λ} =10 000 ч в предельно допустимом режиме эксплуатации (t=70°C/0,1 мА или t=85°C/0,05 мА) - в течение наработки t_{λ} =20 000 ч (при t=70°C/0,05 мА)	3·10 ⁻⁶ 1·10 ⁻⁷									
Срок службы, лет	25									
Срок сохраняемости, лет					25					

Обозначение при заказе: Варистор ВР-13а-15 В АЖЯР.434122.001 ТУ


Зависимость предельно допустимого тока от температуры среды при эксплуатации

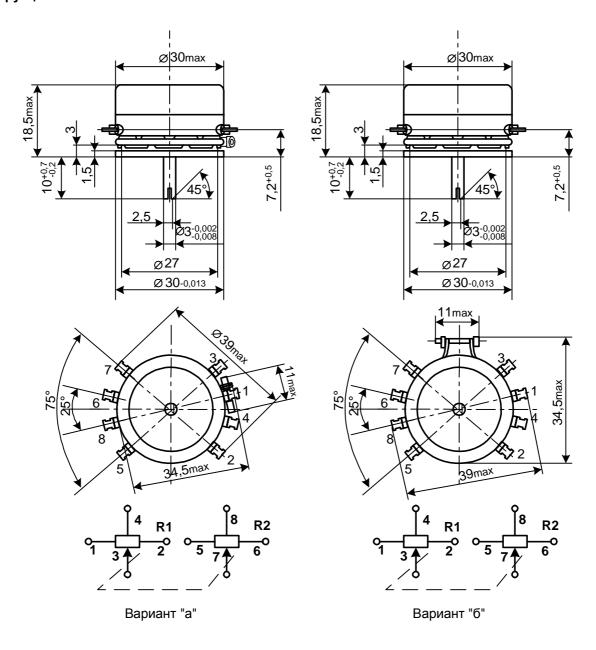

Характер зависимости допустимой амплитуды прямоугольного импульса тока $I_{\text{имп}}$ от длительности импульса τ и количества импульсов N


Вольтамперная характеристика варисторов ВР-13а

Вольт-фарадная характеристика варисторов ВР-13а

Вольт-фарадная характеристика варисторов ВР-14

Для варисторов BP-14a U_{кл} =22 B - ——— Для варисторов BP-14б U_{кл} =22 B - ———


Потенциометры прецизионные непроволочные

Тип	Конструкция	Функциональная характеристика	Допускаемое отклонение функциональной характеристики, %	Номинальное сопротивление, Ом
ПТ1-2а	Сдвоенный односекционный с углом регулирования ±35°	R ₁ - кусочно- линейная	±4,0	$R_1 = 500^{+200}$ $R_2 = 1000^{\pm 200}$
ПТ1-2б	Сдвоенный односекционный с углом регулирования ±65°	R ₂ -линейная	±4,0	$R_1 = 500^{+200}$ $R_2 = 1000^{\pm 200}$
ПТ1-4	Сдвоенный односекционный с углом регулирования 70°	Линейная	±1,0	2200
ПТ1-6*а,б	Счетверенный односекционный с углом регулирования ±64°	Линейная	±1,0	2200
ПТ1-7В новая разработка	Угол регулирования 200°	Линейная	±5,0	5000
ЭР1-1-1, ЭР1- 1-2	Элемент резистивный односекционный и двухсекционный	Линейная	±0,75	3300

Технические условия: АЖЯР.434175.001 ТУ

Предназначены для работы в системах ручной стыковки в космосе.

Конструкция:

Обозначение при заказе: потенциометр ПТ1-2а АЖЯР.434175.001 ТУ

Потенциометры состоят из двух потенциометров R1 и R2 с общим валом.

Номинальное сопротивление

- R1 500⁺²⁰⁰ Om 1000^{±200} Om 1000^{±200} Om

Полный угол регулирования

- вариант «а» ±35° - вариант «б» ±65°

Функциональная характеристика изменения напряжения от угла поворота подвижной системы: кусочно-линейная (R1) и линейная (R2).

Допустимое отклонение функциональной

характеристики ±4,0%

Число поворотов подвижной системы при скорости до 60 циклов в минуту 50000

Момент трогания подвижной системы, макс 4,9 мН·м (50 гс-см)

Напряжение, при котором изоляция резисторов

сохраняет электрическую прочность, мин 200 $B_{3\Phi\Phi}$ (50 Гц)

Сопротивление изоляции, мин 100 МОм

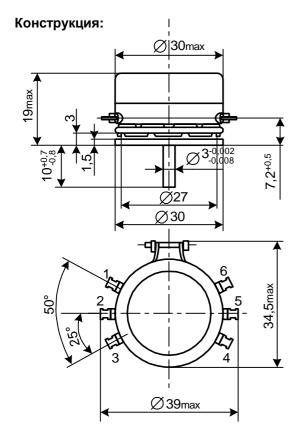
Напряжение питания, макс 19 В

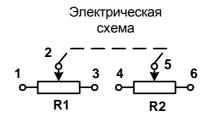
Интервал рабочих температур -60 ... +60 °C

Масса, макс

Срок сохраняемости 17 лет

Наработка 250 ч


Климатическое исполнение УХЛ


по ГОСТ В 20.39.404-81

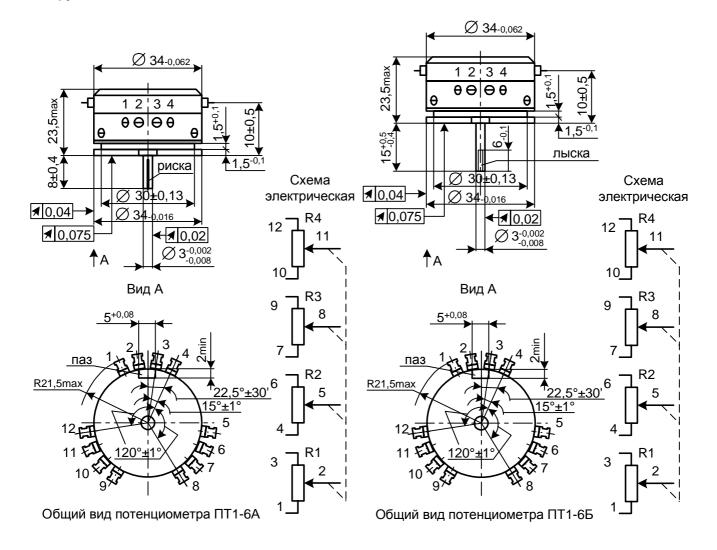
Новая разработка

Технические условия: АЖЯР.434175.002 ТУ

Датчики обратной связи в системах управления авиационных рулевых гидроприводов.

Потенциометры состоят из двух электрически независимых одинарных потенциометров R_1 и R_2 с общим валом.

Номинальное сопротивление R₁, R₂ 2.2 кОм Допустимое отклонение сопротивления ±20 % Механический угол поворота подвижной системы (без упоров) 360° 70° ±1,5° Полный угол регулирования Функциональная характеристика изменения напряжения от угла поворота подвижной системы линейная Допустимое отклонение функциональной характеристики ±1,0 % Рассогласование секций в средней точке, макс ±0,5 %


Число циклов перемещения, мин	2,5·10 ⁶
Момент трогания подвижной системы, макс	9,8 (100) мН-м (гс-см)
Напряжение, при котором изоляция резисторов сохраняет электрическую прочность, мин (50 Гц)	500 Вэфф
Сопротивление изоляции, мин	50 МОм
Напряжение питания – однополярное, макс	15,5 B
Интервал рабочих температур	-60 +140 °C
Масса, макс	50 г
Наработка, мин	2000 ч
Срок сохраняемости, мин	25 лет
Климатическое исполнение	«B»

Обозначение при заказе: потенциометр ПТ1-4 ±1% 2,2 кОм ±20 % В, АЖЯР.434175.002 ТУ ГК

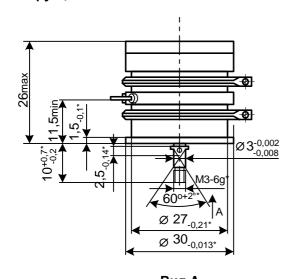
Технические условия: АЖЯР.434175.004 ТУ ГК

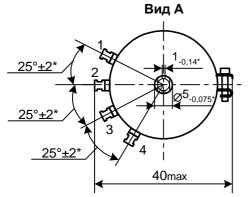
Датчики обратной связи в системах управления авиационных рулевых гидроприводов.

Конструкция:

Счетверенные односекционные потенциометры состоят из четырех электрически независимых одинарных потенциометров R_1 , R_2 , R_3 , R_4 , расположенных на общей плате.

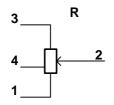
Обозначение при заказе: потенциометр ПТ1-6Б ±1% 2,2 кОм ±20 % В, АЖЯР.434175.004 ТУ ГК


Номинальное сопротивление потенциометров R_1,R_2,R_3,R_4	2,2 кОм
Допустимое отклонение сопротивления	±20 %
Механический угол поворота подвижной системы (без упоров)	360°
Полный угол регулирования	64° ±2°
Функциональная характеристика изменения напряжения от угла поворота подвижной системы	линейная
Допустимое отклонение функциональной характеристики	±1,0 %
Рассогласование секций в средней точке, макс	±1 %
Число циклов перемещения подвижной системы, мин	5·10 ⁶
Максимальная скорость вращения подвижной системы	600 об/мин
Момент трогания подвижной системы, макс	9,8 (100) мН⋅м (гс-см)
Напряжение, при котором изоляция резисторов сохраняет электрическую прочность, мин (50 Гц)	500 Вэфф
Сопротивление изоляции, мин	50 МОм
Напряжение питания, макс	15,5 B
Интервал рабочих температур	-60 +140 °C
Масса, макс	50 г
Наработка, мин	3000 ч
Срок сохраняемости, мин	25 лет
Климатическое исполнение	«B»


Новая разработка

Технические условия: АЖЯР 434175.005 ТУ

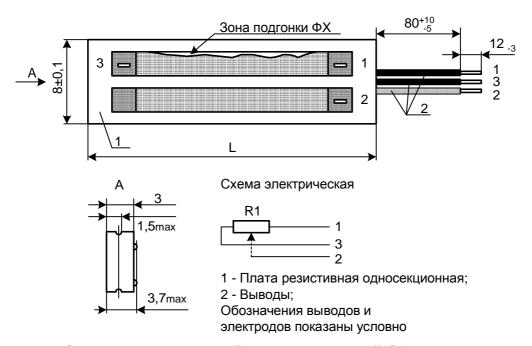
Предназначены для работы в устройствах управления специального назначения.


Конструкция:

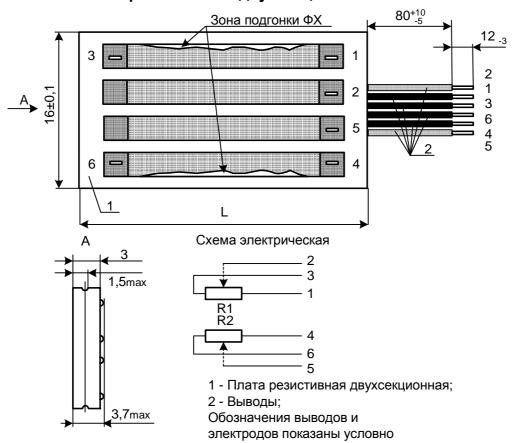
* Размеры контролю не подлежат

Схема электрическая

Номинальное сопротивление	5 кОм
Допускаемое отклонение сопротивления	±5%
Функциональная характеристика	линейная
Допускаемая нелинейность функциональн характеристики, не более	ной ±5 %
Угол регулирования	200°
Допускаемое отклонение угла регулирования	±3°
Механический угол поворота вала	360°
Момент трогания подвижной системы, не более 5 м	іН⋅м (50 гс⋅см)
Радиальное биение вала, не более	0,02 мм
Радиальное биение посадочного выступа корпуса, не более	0,04 мм
Торцевое биение посадочного выступа ко на радиусе 14 мм, не более	рпуса 0,075 мм
Число поворотов подвижной системы, не менее	300000
Рабочее входное напряжение	(6±0,5) B
Напряжение, при котором изоляция резис сохраняет электрическую	торов
прочность, мин	750 Вэфф
Сопротивление изоляции, не менее	100 МОм
Интервал рабочих температур	-60 +70 °C
Масса, не более	50 г
Наработка, мин	25000 ч
Срок сохраняемости, мин	25 лет
Климатическое исполнение по ГОСТ	B B 20.39.404-81


Обозначение при заказе: потенциометр ПТ1-7В – 5кОм±5% АЖЯР.434175.005 ТУ

Технические условия: АЖЯР.434215.001 ТУ


Предназначены для использования в потенциометрических датчиках обратной связи (ДОС) авиационных приводов линейного перемещения.

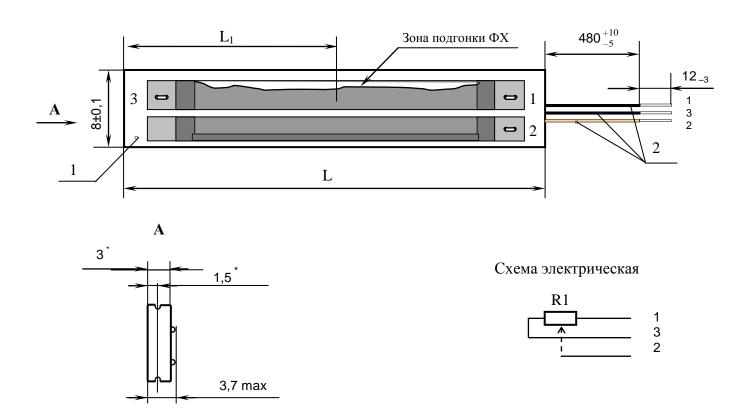
Конструкция:

Элемент резистивный односекционный ЭР1-1-1

Элемент резистивный двухсекционный ЭР1-1-2

Обозначение	Вариант Конструкции Типоразмер регулирования,		Габаритные размеры, мм (см. рис. 1 и 2)			Macca,	
	(число секций)	Титориотор	θ H± Δ θ, MM	длина (L)	ширина	высота, макс	г, макс
ЭР1-1-1x90	1	00	00+0.75	105 _{-0,2}	8±0,1		5,5
ЭР1-1-2x90	2	90	90 90±0,75		16±0,1		10,5
ЭР1-1-1x120	1	120	120 120.1 124	124	8±0,1		7,0
ЭР1-1-2x120	2	120	120±1	134 _{-0,2}	16±0,1		13,5
ЭР1-1-1x165	1	165	105.4	190	8±0,1		9,5
ЭР1-1-2x165	2	100	165±1	180 _{-0,2}	16±0,1	3,7	18,5
ЭР1-1-1x180	1	400 4	405	8±0,1		10,0	
ЭР1-1-2x180	2	180	180±1	195 _{-0,2}	16±0,1		20,0
ЭР1-1-1x250	1	250	254 + 2	270 +0,4 -0,1	8±0,1		13,0
ЭР1-1-2x250	2	250	204±2	210 _{-0,1}	16±0,1		27,0

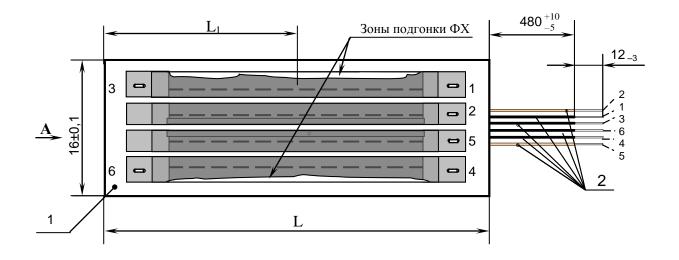
Номинальное сопротивление	3,3 кОм
Допустимое отклонение сопротивления	±20 %
Функциональная характеристика (ФХ)	линейная
Допускаемая нелинейность функциональной характеристики (в пределах хода регулирования, макс	ΦX) ±0,75 %
Изменение сопротивления, макс	±12 %
Предельно допустимое входное напряжение	15,5 B
Ход регулирования	90 254 мм (см. табл.)
Скорость перемещения подвижной системы, макс	400 мм/с
Сопротивление изоляции, мин	100 МОм
Износоустойчивость	2⋅10 ⁶ циклов
Рассогласование индексных точек секций по напряжению, ман	c ±0,5 %
Интервал рабочих температур	-60 +140 °C
Рабочее напряжение	15±0,5 B
Наработка, мин	2000 ч
Срок сохраняемости, мин	25 лет
Климатическое исполнение для эксплуатации в аппаратуре, за	ащищенной

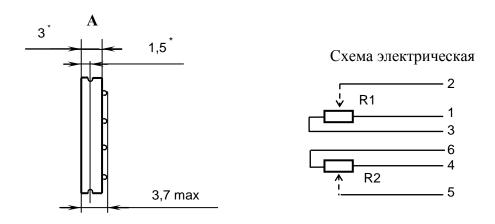

от воздействия соляного тумана и плесневых грибов

Технические условия: АЖЯР.434215.002 ТУ.

Предназначены для использования в качестве комплектующих элементов потенциометрических датчиков обратной связи (ДОС) с ходом линейного перемещения от 75 мм до 254 мм.

Модули изготавливают одного типа, двух вариантов конструкции и пяти типоразмеров в соответствии с таблицей 1 и рисунками 1 и 2.


Модуль резистивный односекционный



- 1 Плата резистивная односекционная; 2 Выводы;
- * Размер проверке не подлежит;

Обозначения выводов, электродов и положение индексной точки (L_1) показаны условно

Рис. 1 Модуль резистивный односекционный

- 1 Плата резистивная двухсекционная; 2 Выводы;
- * Размер проверке не подлежит;

Обозначения выводов, электродов и положение индексной точки (L_1) показаны условно

Рис.2 Модуль резистивный двухсекционный

Табл.1 Варианты исполнения и основные параметры

Обозначение	Вариант конструкции (число секций)	Номер рисунка	Типоразмер	Длина платы, мм	Положение индексной точки <i>L1</i> , мм	Ход регулирования, $ heta_{m{ heta}}$, мм	Рабочий ход, др, мм	Номинальное сопротивление, (R1,R2), кОм	Нелинейность ФХ (в пределах $ heta p$), $\delta n_{ ho}$, не более	Масса, г, не более
MP1-2-1×75	1	1	75	90-1,5	45±0,4	75±0,70	± 34	1,0±30%	± 0,5	10
MP1-2-2×120	2	2	120	134 _{-1,5}	67±0,4	120±1,0	± 55	1,0±30%	± 0,4	20
MP1-2-2×165	2	2	165	180 _{-1,5}	90±0,4	165±1,0	± 76	2,2±30%	± 0,3	25
MP1-2-2×205	2	2	205	220 _{-1,5}	110±0,4	205±1,2	± 93	3,3±30%	± 0,2	30
MP1-2-2×254	2	2	254	270 _{-1,5}	135±0,4	254±1,5	± 114	3,3±30%	± 0,2	40

Интервал рабочих температур: -60 ... +140 $^{\circ}$ C

Функциональная характеристика (ФХ) модулей – линейная.

Допускаемые значения нелинейности ФХ в пределах рабочего хода приведены в таблице 1.

Допускаемая нелинейность за пределами рабочего хода, но в пределах хода регулирования – не более ±1%.

Число циклов возвратно-поступательного перемещения, при использовании подвижного контакта ТЦАФ.303659.007, в пределах хода регулирования не менее 6*10⁶, с усилием прижима подвижного контакта 25...30гс.

Амплитуда, частота и количество циклов перемещений приведены в таблице 2.

Табл.2

Амплитуда перемещения подвижного контакта	Частота перемещений, Гц.	Количество циклов перемещения		
± 1% от хода регулирования	0.0	3·10 ⁶		
(80100)% от хода регулирования	0,60,8	3·10 ⁶		

Предельно допустимое входное напряжение, прикладываемое к выводам 1-3 и 4-6 модуля -20,5B. **Обозначение при заказе:** модуль резистивный MP1-2-2x120 $\pm 0,4\%$ 1 кОм $\pm 30\%$ АЖЯР.434215.002 ТУ

ФОТОЭЛЕКТРИЧЕСКИЕ И ОПТОЭЛЕКТРОННЫЕ ПРИБОРЫ

В ОАО «НИИ «Гириконд» в течение последних 50 лет проводятся исследования в области полупроводниковой оптоэлектроники и разработки различных типов фотоэлектрических и оптоэлектронных приборов для широкого спектра электромагнитного оптического излучения.

Основные полупроводниковые материалы, используемые в технологии изготовления оптоэлектронных приборов – это материалы группы A^2B^6 , A^4B^6 и твердые растворы на их основе.

Технология обеспечивает реализацию на поликристаллических пленочных структурах в спектральном диапазоне 0,4-5,2 мкм четырех известных фотоэлектрических эффектов: фоторезистивного, фотогальванического, фотолюминесцентного и электролюминесцентного.

В соответствии с этим разрабатываются и изготавливаются четыре класса фотоэлектрических и оптоэлектронных приборов: фоторезисторы, фотоэлементы, фотолюминесцентные и электролюминесцентные излучатели. Каждый из перечисленных типов имеет различные конструктивные модификации.

В ОАО «НИИ «Гириконд» разрабатываются и могут быть изготовлены многоэлементные и многоцветные фотоприемники с учетом конкретных требований потребителя, работающие без специального охлаждения или с термоэлектрическими охладителями, с системами термостабилизации и с электронными устройствами первичной обработки электрического сигнала.

Для видимой, ближней и средней ИК-области спектра разрабатывается широкая номенклатура полупроводниковых фотоэлектрических приемников, излучателей, оптопар, в частности, октронов с согласованными по спектру излучателем и приемником излучения.

С использованием перечисленных выше полупроводниковых фотоэлектрических и оптоэлектронных элементов в ОАО "НИИ "Гириконд" разрабатываются и изготавливаются различные типы электронных датчиков и извещателей. К ним относятся извещатели пламени и дыма, основные функциональные узлы различных типов теплопеленгаторов и тепловизионных устройств, бесконтактных теплоопределителей и приборов контроля освещенности, спектрально-аналитической и пирометрической аппаратуры.

В ОАО «НИИ «Гириконд» разработана первая отечественная серия инфракрасных многодиапазонных пожарных извещателей пламени для применения в обычной и взрывоопасной среде "НАБАТ". Извещатели "НАБАТ" предназначены для обнаружения пламени и очагов пожара или для предупреждения самопроизвольного погасания пламени газовых горелок и факелов. Возможно их применение в системах взрывоподавления.

ОАО «НИИ «Гириконд» готов к изготовлению опытных образцов к разработке и последующему изготовлению перечисленных типов оптоэлектронных и фотоэлектрических приборов с учетом конкретных требований потребителей.

Фотоэлектрические полупроводниковые приемники излучения (ФЭПП)

Фоторезисторные и фотодиодные (фотогальванические) ФЭПП: одноэлементные, многоэлементные и многоспектральные для широкого спектра электромагнитного излучения, охлаждаемые термоэлектрической батареей и неохлаждаемые.

Предназначены для применения в качестве фоточувствительных элементов в различных электронных схемах и приборах. В частности для эксплуатации в спектрально-аналитической, тепловизионной, пирометрической аппаратуре и системах обеспечения безопасности.

Фоторезисторные ФЭПП для ближней и средней ИК-области спектра

	Тип					
Технические характеристики	<u>ФР622</u>	<u>ФР623</u>	<u>ФР624</u>			
	[ФР622Т*]	[ФР623Т]	[ФР624Т]			
Вольтовая чувствительность в максимуме** (при 25°C), В/Вт	50000	10000	5000			
	[200000]	[40000]	[2000]			
Удельная обнаружительная способность (при 25°С), не менее, D*λ _{max} , см.Гц ^{1/2} . Вт ⁻¹	1,5x10 ¹⁰	1x10 ¹⁰	5x10 ⁹			
Условия измерения, пик 800 Гц	[4x10 ¹⁰]	[3x10 ¹⁰]	[1.5x10 ¹⁰]			
Длина волны максимума спектральной	2.7	3.3	3.8			
чувствительности, мкм	[3.0]	[3.5]	[3.9]			
Область спектральной чувствительности, мкм	0.93.5	0.94.2	0.94.7			
	[0.93.8]	[0.94.5]	[0.94.9]			
Время нарастания (спада) общего тока, не	30 (30)	15 (15)	5 (5)			
более, мкс	[50 (50)]	[30 (30)]	[10 (10)]			
Тип корпуса		KT-2				
Размер элемента, мм	0,05 x 0,05; 0,1 x 0,1; 1 x 1; 2 x 2; 3 x 3					
Интервал рабочих температур, °С	от -50 до +60					

^{• -} индекс Т означает наличие в корпусе термоэлектрической односекционной батареи;

^{** -} значения вольтовой чувствительности приведены для фоточувствительной площадки 1 мм²

Фотогальванические ФЭПП для средней ИК-области спектра

Технические характеристики	ФЭ722	ФЭ723	ФЭ724
Токовая чувствительность (режим короткого замыкания), при 25°C, A/Bт	0.2 (1000K)	0.15 (1000K)	0.1 (1000K)
Вольтовая чувствительность (режим холостого хода), при 25°C, B/Bт	100 (1000K)	70 (1000K)	50 (1000K)
Удельная обнаружительная способность (при 25°C) D* λ _{max} , см.Гц ^{1/2} . Вт ⁻¹	2x10 ¹⁰ (peak. 800 Гц)	0.8x10 ¹⁰ (peak. 800 Гц)	6х10 ⁹ (peak. 800 Гц)
Длина волны максимума спектральной чувствительности, мкм	2.7	3.3	3.8
Область спектральной чувствительности, мкм	0.93.5	0.94.2	0.94.7
Время нарастания (спада) общего тока, мкс	20 (10)	10 (4)	5 (1)
Тип корпуса		KT-2	
Размер элемента, мм²	1x1; 2x2		
Интервал рабочих температур, °С (допускается кратковременно)	0	г -50 до +60 (+8	0)

По специальному заказу потребителей могут быть изготовлены:

• Фоторезисторные ФЭПП одноэлементные, многоэлементные и многоспектральные для ближней и средней ИК-области спектра.

Области применения:

тепловизионная, спектрально-аналитическая, пирометрическая аппаратура, пожарные извещатели пламени, спектроскопия, газовый анализ и др.

Основные характеристики:

- длина волны максимума спектральной чувствительности, мкм	2,6 4,0
-область спектральной чувствительности, мкм	1,0 5,3
-удельная обнаружительная способность D [*] _{лмах} , см·ГЦ ^{1/2} ВТ ⁻¹	4·10 ⁹ 1,7·10 ¹¹
-размеры стороны фоточувствительной площадки, мм	0,05 2,0

По желанию заказчика фоточувствительные элементы могут быть подобраны для работы в различных поддиапазонах, т. е. ФЭПП могут работать как многоспектральные.

FURIUSUE	
ГИРИКОНД _	
· · · · · · · · · · · · · · · · · · ·	

Фотогальванические ФЭПП одноэлементные, многоэлементные и многоспектральные для ближней и средней ИК-области спектра.

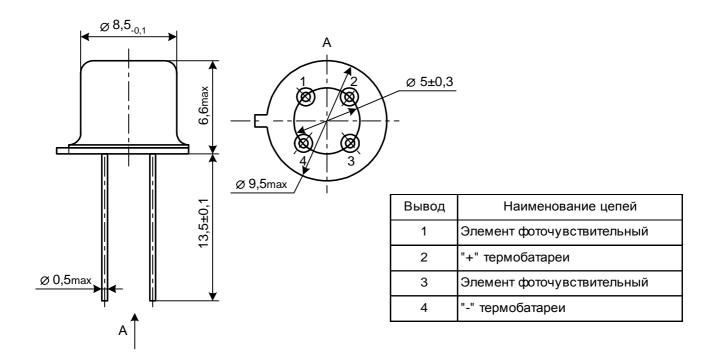
Области применения:

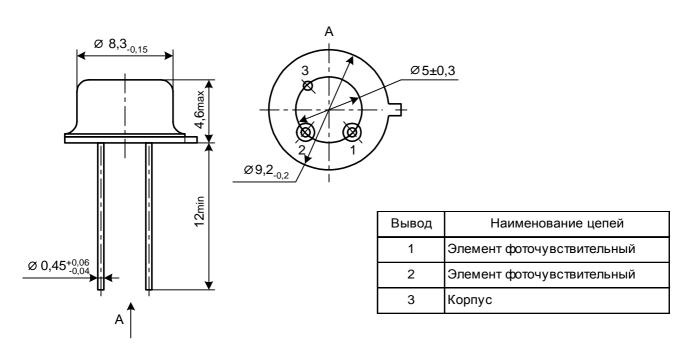
пожарные извещатели пламени, дистанционное измерение температуры, жидкостные и газовые спектроанализаторы, системы взрывоподавления и др.

Достоинства:

- отсутствие необходимости в источниках питания
- протекание тока через структуру только в момент облучения
- низкий уровень шумов в широкой полосе частот
- малый температурный коэффициент чувствительности
- возможность использования в различных режимах (холостого хода и короткого замыкания)
- широкий температурный диапазон: от -60 °C до +80 °C

Основные характеристики:


- длина волны максимума спектральной чувствительности, мкм -область спектральной чувствительности, мкм	2,6 4,0 1,0 5,0
- вольтовая чувствительность в максимуме (режим холостого	до 2500
хода), В/Вт	
- токовая чувствительность (режим короткого замыкания), А/Вт	до 1,0
-удельная обнаружительная способность D [*] _{лмах} , см·ГЦ ^{1/2} Вт ⁻¹	3·10 ⁹ 3·10 ¹⁰


Фотоприемники могут комплектоваться интерференционными фильтрами, с требуемыми спектральными характеристиками, на входные окна могут наноситься просветляющие покрытия. Фильтры могут быть отрезающими, полосовыми и узкополосными.

Технические условия: АДПК.434125.001 ТУ

Предназначены для эксплуатации в спектрально-аналитической аппаратуре и системах обеспечения безопасности.

Конструкция: изолированные, герметизированные

Обозначение при заказе: фоторезистор ФР622-0,1 АДПК.434125.001 ТУ

ГИРИКОНД _

ФР622

Вариант конструкции	ФР622-0,1	ФР622-0,5	ФР622-1	ФР622-2	ФР622-3		
Размер фоточувствительного элемента, мм	0,1x0,1	0,5x0,5	1x1	2x2	3x3		
Рабочее напряжение, U _{раб} , В	0,5±0,1	1±0,2	5±1	5±1	5±1		
Темновое сопротивление, R _т , кОм	70 500						
Статистическая вольтовая чувствительность, S _u , B/Bт, не менее	12 000	2400	1200	600	400		
Собственная постоянная времени по нарастанию и спаду сигнала, $_{ au}$, мкс, не более			30				
Удельная обнаружительная способность, $D^*\lambda_{max}$, $c_M \cdot \Gamma \mu^{1/2} \cdot B_T^{-1}$, не менее			1·10 ¹⁰				
Длина волны максимума спектральной чувствительности, λ max, мкм	2,8±0,2						
Коротковолновая граница спектральной чувствительности, λ', мкм	1,6±0,2						
Длинноволновая граница спектральной чувствительности, λ", мкм	3,5±0,2						
Масса, г, не более		1,0					

ФР623

Вариант конструкции	ФР623-0,1	ФР623-0,5	ФР623-1	ФР623-2	ФР623-3	
Размер фоточувствительного элемента, мм	0,1x0,1	0,5x0,5	1x1	2x2	3x3	
Рабочее напряжение, U _{раб} , В	0,5±0,1	1±0,2	5±1	5±1	5±1	
Темновое сопротивление, R _т , кОм	25 300	25 300	25 300	30 120	25 300	
Статистическая вольтовая чувствительность, S _u , B/Bт, не менее	12 000	2400	1200	600	400	
Собственная постоянная времени по нарастанию и спаду сигнала, $_{ au}$, мкс, не более	15					
Удельная обнаружительная способность, $D^*\lambda_{max}$, $c_M \cdot \Gamma \mu^{1/2} \cdot B_T^{-1}$, не менее			0,8·10 ¹⁰			
Длина волны максимума спектральной чувствительности, λ max, мкм	3,2±0,2					
Коротковолновая граница спектральной чувствительности, λ', мкм	1,6±0,2	1,6±0,2	1,6±0,2	2,6±0,2	1,6±0,2	
Длинноволновая граница спектральной чувствительности, λ", мкм			4,7±0,2			
Масса, г, не более	1,0					

ФР624

Вариант конструкции	ФР624-0,1	ФР624-0,5	ФР624-1	ФР624-2	ФР624-3	
Размер фоточувствительного элемента, мм	0,1x0,1	0,5x0,5	1x1	2x2	3x3	
Рабочее напряжение, U _{раб} , В	0,5±0,1	1±0,2	5±1	5±1	5±1	
Темновое сопротивление, R _т , кОм	10 100	10 100	10 100 10 100		10 100	
Статистическая вольтовая чувствительность, S _u , B/Bт, не менее	8 000	1600	800	400	250	
Собственная постоянная времени по нарастанию и спаду сигнала, $_{ au}$, мкс, не более	5					
Удельная обнаружительная способность, $D^*\lambda_{max}$, $c_M \cdot \Gamma \mu^{1/2} \cdot B_T^{-1}$, не менее	0,6·10 ¹⁰					
Длина волны максимума спектральной чувствительности, λ max, мкм	3,6±0,2					
Коротковолновая граница спектральной чувствительности, λ', мкм	1,6±0,2	1,6±0,2	1,6±0,2	2,6±0,2	1,6±0,2	
Длинноволновая граница спектральной чувствительности, λ", мкм	4,7±0,2					
Масса, г, не более	1,0					

ФР622-Т

Вариант конструкции	ФР622-0,1 ФР622 -0,5		ФР622 -1	ФР622 -2	ФР622 -3
, , , , , , , , , , , , , , , , , , ,	-1T	-1T	-1T	-1T	-1T
Размер фоточувствительного элемента, мм	0,1x0,1	0,5x0,5	1x1	2x2	3x3
Рабочее напряжение, U _{раб} , В	0,5±0,1 1±0,2 5±1		5±1	5±1	
Темновое сопротивление, $R_{\scriptscriptstyle T}$, кОм	100 750				
Статистическая вольтовая чувствительность, S _u , B/Bт, не менее	100 000 20 000 10 00		10 000	5000	3000
Собственная постоянная времени по нарастанию и спаду сигнала, $_{ au}$, мкс, не более	50				
Удельная обнаружительная способность, $D^*\lambda_{max}$, см \cdot Гц $^{1/2}\cdot$ Вт $^{-1}$, не менее	4,0·10 ¹⁰				
Длина волны максимума спектральной чувствительности, λ max, мкм	3,0±0,2				
Коротковолновая граница спектральной чувствительности, λ', мкм	1,6±0,2				
Длинноволновая граница спектральной чувствительности, λ", мкм	3,7±0,2				
Масса, г, не более	1,4				

ФР623-Т

Вариант конструкции	ФР623-0,1 ФР623 -0,5		ФР623 -1	ФР623 -2	ФР623 -3
Вариатт колотрукции	-1T	-1T	-1T	-1T	-1T
Размер фоточувствительного элемента, мм	0,1x0,1	0,5x0,5	1x1	2x2	3x3
Рабочее напряжение, U _{раб} , В	0,5±0,1	1±0,2	5±1	5±1	5±1
Темновое сопротивление, R _т , кОм	40 500 40 500 40		40 500	50 200	40 500
Статистическая вольтовая чувствительность, S _u , B/Bт, не менее	70 000 15 000 7 000		7 000	3500	2000
Собственная постоянная времени по нарастанию и спаду сигнала, $_{ au}$, мкс, не более	30				
Удельная обнаружительная способность, $D^*\lambda_{max}$, см \cdot Гц $^{1/2}\cdot$ Вт $^{-1}$, не менее	3,0·10 ¹⁰				
Длина волны максимума спектральной чувствительности, λ max, мкм	3,5±0,2				
Коротковолновая граница спектральной чувствительности, λ', мкм	2,6±0,2				
Длинноволновая граница спектральной чувствительности, λ", мкм	4,5±0,2				
Масса, г, не более	1,4				

ФР624-Т

P624 -3 -1T				
-1T				
3x3				
5±1				
0 400				
1800				
10				
2,0·10 ¹⁰				
3,9±0,2				
2,6±0,2				
4,9±0,2				
1,4				

 Интервал рабочих температур
 $-45 \dots +45$ °C

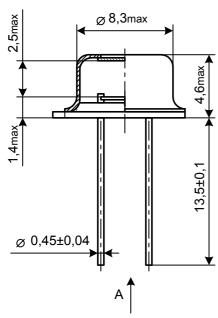
 Наработка
 10000 ч

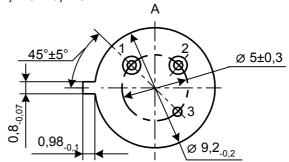
 Срок сохраняемости
 10 лет

 Климатическое исполнение
 УХЛ 3.1. по ГОСТ 15150-69

Технические условия: АДПК.432231.001 ТУ

Предназначены для эксплуатации в спектрально-аналитической тепловизионной и пирометрической аппаратуре и системах обеспечения безопасности. Работают в фотогальваническом режиме, многоспектральные.

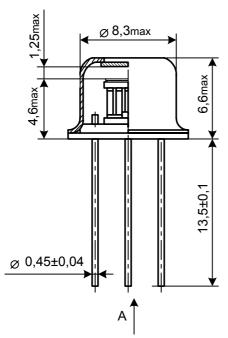

Конструкция: изолированные, герметизированные

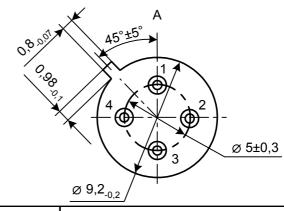

Фотоэлементы изготавливают шести типов, двух вариантов конструкции каждого типа.

По конструктивному исполнению фотоэлементы являются неохлаждаемыми (ФЭ722, ФЭ723, ФЭ724) и охлаждаемыми (ФЭ722-Т, ФЭ723-Т, ФЭ724-Т).

Число каскадов термоэлектрической батареи (ТЭБ) охлаждаемых фотоэлементов – 1.

Фотоэлементы ФЭ722, ФЭ723, ФЭ724





Вывод	Наименование цепей
1	"-" элемента фоточувствительного
2	"+" элемента фоточувствительного
3	Корпус

Обозначения выводов показаны условно

Фотоэлементы ФЭ722-Т, ФЭ723-Т, ФЭ724-Т

Вывод	Наименование цепей
1	"-" элемента фоточувствительного
2	"+" батареи термоэлектрической
3	"+" элемента фоточувствительного
4	"-" батареи термоэлектрической

Обозначение при заказе: фотоэлемент ФЭ722-1-Б АДПК.432231.001 ТУ

Тип фотоэлемента			Ф Э722		Ф Э723		ФЭ724		
Вариант конструкции			ФЭ722-1	ФЭ722-2	Ф Э723-1	ФЭ723-2	ФЭ724-1	ФЭ724-2	
Эффективная площадь фоточувствительного элемента, мм			1,0	2,0	1,0	2,0	1,0	2,0	
тов	Α	R₀<1 кОм	I _{кз} , мкА, не менее	_	_	60	60	40	40
элеме			U _{кз} , мВ, не менее	_	_	20	30	13	20
Группа по значению электрических параметров фотоэлементов	Б	1 кОм≤R ₀ < 1,5 кОм	I _{кз} , мкА, не менее	70	70	50	50	35	35
раметрс	ם		U _{xx} , мВ, не менее	35	50	25	40	18	26
ких пар	В	1,5 кОм≤R ₀ < 3 кОм	I _{кз} , мкА, не менее	60	60	40	40	25	25
тричес			U _{xx} , мВ, не менее	50	75	34	50	25	35
ю элек	L	3 кОм≤R ₀ < 7 кОм	I _{кз} , мкА, не менее	-	45	-	30	-	_
начени			U _{xx} , мВ, не менее	1	80	1	60	1	_
па по з	Д	0,5 кОм≤R ₀ < 7 кОм	I _{кз} , мкА, не менее	25	25	20	20	15	15
Груп			U _{xx} , мВ, не менее	25	35	20	30	15	25
Собственная постоянная времени по нарастанию и спаду сигнала, $_{\tau}$, мкс, не более		3	0	15		5			
Длина волны максимума спектральной чувствительности, λ_{max} , мкм			2,6±0,2		3,2±0,2		3,7±0,2		
Коротковолновая граница спектральной чувствительности, λ', мкм			1,0±0,2		1,0±0,2		1,0±0,2		
Длинноволновая граница спектральной чувствительности, λ ", мкм			3,5±0,2		4,2±0,2		4,7±0,2		
Масса, г			1,4						
Интерва	ал рабо	очих температур	, °C	-45 +65					

Примечания:

- 1. Значения параметров фотоэлементов приведены при температуре (20±5) °C, токе питания ТЭБ (0,4±0,08) А и при условии обеспечения теплоотвода от горячей грани ТЭБ охлаждаемых фотоэлементов с фильтром "отрезающим" №13 (см. табл.1). При этом системой теплоотвода необходимо рассеивать мощность 0,4 Вт.
- 2. Значения тока короткого замыкания и напряжения холостого хода приведены для излучателя абсолютно черное тело (АЧТ) с температурой полости 1273 К при плотности потока излучения 0,04 Вт/см².
- 3. Фотоэлементы работают только в фотогальваническом режиме.

Тип фот	оэлем	ента		Ф Э7	'22-T	ФЭ7	23-T	Ф Э7	'24-T
Вариан	т конст	грукции		ФЭ722- Т-1	ФЭ722- Т-2	ФЭ723- Т-1	Ф Э723- Т-2	ФЭ724- Т-1	ФЭ724- Т-2
		площадь ельного элемент	а, мм	1.0	2.0	1.0	2.0	1.0	2.0
нтов	A	R₀<1 кОм	I _{кз} , мкА, не менее	-	ı	ı	ı	ı	60
элеме	Α	N ₀ < 1 KOW	U _{кз} , мВ, не менее	_	-	-	ı	-	60
зв фотс	Б	1 кОм≤R ₀ <	I _{кз} , мкА, не менее	-	-	75	75	50	50
Группа по значению электрических параметров фотоэлементов	ם	1,5 кОм	U _{хх} , мВ, не менее	-	ı	75	120	55	75
ких пар	В	1,5 кОм≤R ₀ <	I _{кз} , мкА, не менее	90	90	60	60	40	40
тричес	ם	3 кОм	U _{xx} , мВ, не менее	150	220	100	150	75	100
ю элек	Г	3 кОм≤R ₀ <	I _{кз} , мкА, не менее	70	70	45	45	30	30
начени	•	7 кОм	U _{xx} , мВ, не менее	170	250	120	180	80	120
па по з	Д	0,5 кОм≤R ₀ <	I _{кз} , мкА, не менее	35	35	30	30	27	27
Груп	τ	7 кОм	U _{xx} , мВ, не менее	75	100	60	90	45	75
		постоянная врем спаду сигнала,		5	0	3	0	1	0
Длина в чувстви		максимума спек ости, λ _{тах} , мкм	•	2,8:	±0,2	3,5	±0,2	3,9	±0,2
-		вая граница спе ости, λ', мкм	ктральной	1,0:	±0,2	1,0±0,2		1,0±0,2	
		зая граница спен ости, λ", мкм	стральной	3,7:	±0,2	4,5±0,2		4,9±0,2	
Масса,	Γ					1.	.0	,	
Интерва	ал раб	очих температур	o, °C			-45	. +65		

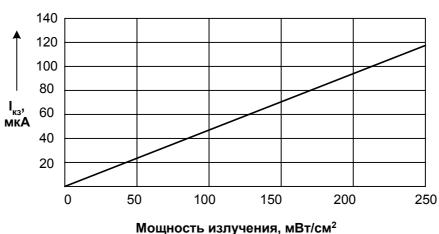
Примечания:

- 1. Значения параметров фотоэлементов приведены при температуре (20±5) °C, токе питания ТЭБ (0,4±0,08) А и при условии обеспечения теплоотвода от горячей грани ТЭБ охлаждаемых фотоэлементов с фильтром "отрезающим" №13 (см. табл.1). При этом системой теплоотвода необходимо рассеивать мощность 0,4 Вт.
- 2. Значения тока короткого замыкания и напряжения холостого хода приведены для излучателя абсолютно черное тело (АЧТ) с температурой полости 1273 К при плотности потока излучения 0,04 Вт/см².
- 3. Фотоэлементы работают только в фотогальваническом режиме, при этом реализуется либо режим "холостого" хода, либо режим "короткого замыкания".

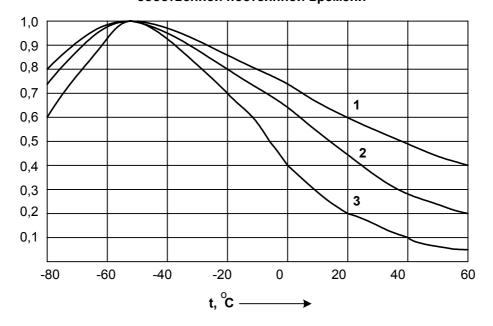
Таблица 1. Характеристики оптических фильтров по пропусканию.

Обозначение фильтра	Тип фильтра	λ _{max} , мкм ±0,02	λ _{0,5} , ΜΚΜ	λ _{0,1} , ΜΚΜ	FW _{нм} , нм ±20	FW _{0,1М} , нм ±30
1	полосовой	2,98	2,95 3,03		70	120
2	полосовой	3,07	3,01 3,14		140	220
3	полосовой	3,23	3,18 3,23		100	160
4	полосовой	3,278	3,194 3,327		90	150
5	полосовой	3,29	3,18 3,4		220	350
6	полосовой	3,32	3,25 3,38		200	320
7	полосовой	3,4	3,25 3,54		280	450
8	полосовой	3,58	3,51 3,65		140	230
9	полосовой	3,9	3,82 3,96		140	230
10	полосовой	4,31	4,21 4,41		200	320
11	отрезающий			1,6		
12	отрезающий			2,6		
13	отрезающий			0,8		

Примечание: λ_{max} – длина волны максимума пропускания фильтра


 $\lambda_{0,5}$ – длина волны, на которой пропускание фильтра составляет 50% от максимума $\lambda_{0,1}$ – длина волны, на которой пропускание фильтра составляет 10% от максимума FW_{HM} – ширина полосы пропускания фильтра на уровне 50% от максимума $FW_{0.1\text{M}}$ – ширина полосы пропускания фильтра на уровне 10% от максимума

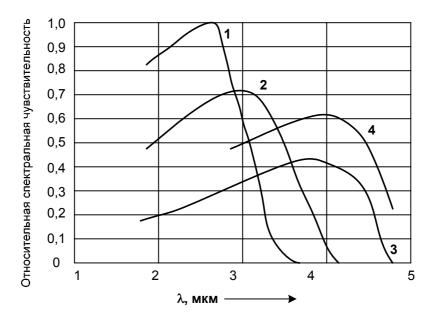
Фотоэлементы могут быть изготовлены с одним из «отрезающих» или полосовых оптических фильтров с характеристиками по пропусканию, приведенными в табл. 1.


Ток питания термоэлектрической батареи (ТЭБ) фотоэлемента 0,4±0,08 A, при этом напряжение питания ТЭБ не должно превышать 1,2 B.

Гарантийная наработка 10000 ч Гарантийный срок хранения 10 лет Климатическое исполнение УХЛ 3.1. по ГОСТ 15150-69

Характер ампер-ваттной зависимости

Характер температурных зависимостей тока короткого замыкания, напряжения холостого хода и собственной постоянной времени



1 – ток короткого замыкания

3 – напряжение холостого хода

2 – собственная постоянная времени

Характер спектрального распределения чувствительности

1 – ΦЭ722

3 – ФЭ724

 $2 - \Phi 9723$

4 - Φ9724-Τ

Фотоприемные устройства (ФПУ)

Фотоприемные устройства для ближней и средней ИК-области спектра

Предназначены для применения в тепловизорах, спектрально-аналитической и пирометрической аппаратуре в анализаторах газовых и жидких сред и т.д.

По специальному заказу потребителей могут быть изготовлены одноэлементные и многоэлементные ФПУ с раздельными каналами для ближней и средней ИК-областей спектра, охлаждаемые (ТЭБ) и неохлаждаемые.

Основные характеристики:

- о длина волны макс. спектральной чувствительности 2,6 ... 4,3 мкм;
- о область спектральной чувствительности 1,0 ... 5,3 мкм;
- \circ удельная обнаружительная способность, $D^*\lambda_{max}$ $4x10^9$... $1,5x10^{11}$ см. $\Gamma \mu^{1/2}$.В τ^{-1} ;
- \circ вольтовая чувствительность в максимуме, не менее $5x10^2$... $5x10^7$ B/BT;
- о размер стороны чувствительной площадки 0,05 ... 2,0 мм

ФЭПП ФПУ и ФПУ могут комплектоваться интерференционными фильтрами, с требуемыми спектральными характеристиками, на входные окна могут наноситься просветляющие покрытия. Фильтры могут быть отрезающими, полосовыми и узкополосными.

По специальному заказу потребителей ФПУ могут быть изготовлены с соответствующей оптической системой.

Полупроводниковые излучатели для ближней и средней ИК-области спектра

Полупроводниковые излучатели для ближней ИК-области спектра (0,8 - 0,95 мкм)

Область применения:

излучатели для ПЗС - фотоприемников, фотолюминесцентные излучатели, ИКизлучатели для охранных систем, приборов ночного видения, приборов дистанционного контроля, оптической связи, измерительных систем и т.д.

Основные характеристики:

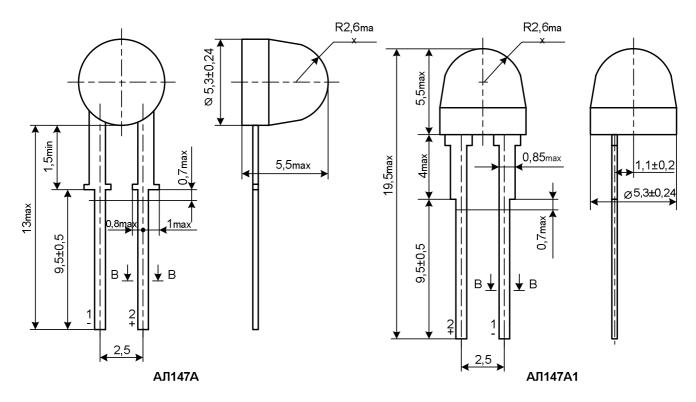
Технические характеристики	<u>АЛ147А</u>	<u>АЛ147А1</u>
Длина волны максимума излучения, мкм	0,805 0,815	0,850 0,890
Мощность излучения, мВт	15 40	15 20
Постоянное прямое напряжение, В	<1,8	<1,8
Постоянный прямой ток, А	0,1	0,1
Импульсный прямой ток, А	1,5	1,5
Время нарастания (спада) импульса излучения, мкс	0,3	0,3
Полный угол излучения, градус	40	40
Особенности конструктивного исполнения	Полимерный корпус	Полимерный корпус

Полупроводниковые излучатели для ближней и средней ИК-области спектра (2 - 4,5 мкм)

Область применения:

ИК - спектрофотометрия и спектроскопия, в частности, спектроанализаторы газовых и жидких сред: углекислого и угарного газов, воды, углеводородов и т.п.; оптоволоконная связь; интегральная оптика и др. ИК - аппаратура.

Основные характеристики:


0	длина волны максимума излучения -	3,0 3,8 мкм;
0	ширина спектра излучения (на уровне 0,5) -	0,5 0,8 мкм;
0	мощность излучения (непрерывный режим) -	0,06 0,16 мВт;
0	мощность излучения (импульсный режим) -	0,6 1,2 мВт;
0	постоянное прямое напряжение -	10 B;
0	постоянный (импульсный) прямой ток -	0,1 (2,0) A;
0	длительность импульса при скважности	200 100 мкс;
0	время нарастания (спада) излучения -	10 мкс.

Полупроводниковые излучатели для ближней и средней ИК-области спектра могут комплектоваться интерференционными фильтрами, с требуемыми спектральными характеристиками. Полупроводниковые излучатели изготавливаются по специальному заказу.	
-ириконд <u> </u>	

Технические условия: аА0.336.856 ТУ

Предназначены для работы в системах дистанционного управления, в приборах ночного видения.

Конструкция: в полимерном корпусе

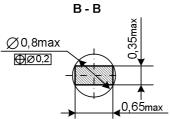


Схема электрическая принципиальная

Обозначение выводов Знаки "+", "-" указаны условно и соответствуют схеме электрической принципиальной.

Обозначение при заказе: излучающий диод АЛ147A аA0.336.856 ТУ; излучающий диод АЛ147A1 аA0.336.856 ТУ

Наименование параметров	Значение параметров
Постоянное прямое напряжение, U_{np} , B ($I_{np} = 100 \text{ мA}\pm3 \text{ мA}$), не более	1,8
Сигнал излучения, I _e , мВт/ср (I _{пр.и} = 100 мА±3 мА; _{ти} = 40 мс±4мс; Q≥10), не менее	15
Угол излучения, θ , град, не менее	40
Длина волны излучения в максимуме спектральной плотности, λ_{max} , нм (I_{np} = 50 мA±1 мA)	805 815* 850 890*
Время нарастания (спада) импульса излучения, $t_{\text{нар}}$ ($t_{\text{сп}}$), нс ($t_{\text{пр,u}}$ = 100 мA±3 мA), не более	300
Интервал рабочих температур, °C	-60 +85
Масса, г	0,25

^{*} Конкретный диапазон длины волны излучения в максимуме спектральной плотности указывают в договоре на поставку

15000 ч

10 лет

Наработка Срок сохраняемости УХЛ 2.1, 5.1 по ГОСТ 15150-69 Климатическое исполнение

Оптические интерференционные покрытия и фильтры

Оптические интерференционные покрытия, нанесенные на преломляющие и отражающие грани оптических элементов позволяют формировать требуемые, разнообразные спектральные характеристики, которые могут быть получены благодаря уникальным свойствам тонкопленочных систем.

На предприятии разрабатываются и изготавливаются следующие типы покрытий и интерференционных фильтров для спектрального диапазона от 1,5 до 25 мкм:

- зеркальные металлические покрытия металлические покрытия изготавливаются как без защитного покрытия, так и с защитой на основе тугоплавких окислов
- просветляющие хроматические и ахроматические (широкополосные) покрытия
- блокирующие коротковолновые и длинноволновые фильтры
- узкополосные и полосовые фильтры

Ниже представлены спектральные характеристики некоторых изготавливаемых покрытий и фильтров.

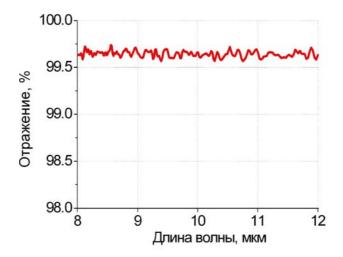


Рис. 1. Отражение зеркального металлического покрытия (Cu с защитой)

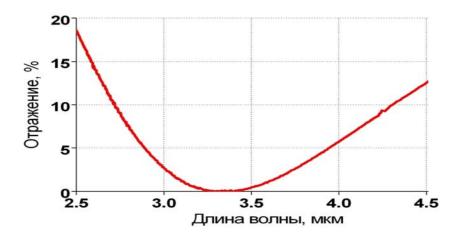


Рис. 2. Отражение подложки из кремния с однослойным двухсторонним просветляющим покрытием

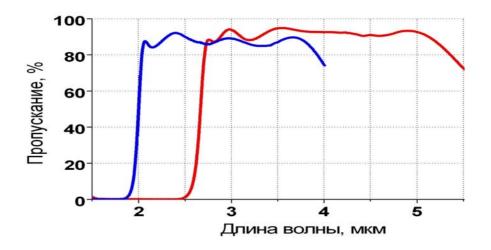


Рис. 3. Блокирующие коротковолновые фильтры

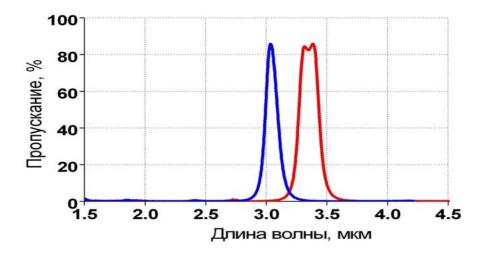


Рис. 4. Узкополосные фильтры на 3.06 мкм и 3.4 мкм

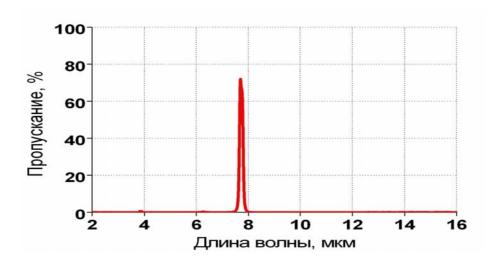


Рис. 5. Узкополосный фильтр на 7.73 мкм

Рис. 6. Полосовой фильтр на подложке из кремния

Рис. 7. Полосовой фильтр на подложке из германия

Представленные на рисунках спектральные характеристики являются экспериментальными.

Для достижения высоких эксплуатационных и оптических параметров тонкослойных покрытий, процесс вакуумного напыления сопровождается ионным ассистированием, а контроль толщины осаждаемых слоев осуществляется системой спектрального контроля.

Извещатели пожарные пламени инфракрасные и многодиапазонные «НАБАТ»

Технические условия: АДПК.425241.001.ТУ, ТУ 4371-009-23079412-2012, ТУ 4371-011-23079412-2014, ТУ 4371-013-23079412-2015.

Извещатели пламени «НАБАТ» - предназначены для обнаружения возгораний, сопровождающихся появлением электромагнитного излучения от очага пламени, тления или начальной фазы формирования взрывного процесса. При обнаружении электромагнитного излучения извещатель переходит из состояния дежурного режима в режим «Пожар».

Принцип работы:

пожарных извещателях пламени «НАБАТ» вместо традиционного идентификации пламени по низкочастотным колебаниям излучения – использован принцип спектральной селекции, что обеспечивает им высокую чувствительность и помехозащищенность, в том числе и от мерцающих источников различного «цвета» и интенсивности. В качестве оптического элемента применен многоспектральный фотоприемник основного быстродействующий фотогальванический приемник излучения, преобразующий электромагнитное излучение пламени и посторонних источников излучения в электрический сигнал.

Фотогальванический приемник реагирует в общем случае на электромагнитное излучение в нескольких спектральных поддиапазонах: 0,9 - 1,2 мкм, 2,5 - 2,9 мкм и 4,0 - 4,4 мкм. Спектральный поддиапазон 0,9 - 1,2 мкм реагирует на фоновые помехи (солнце, искусственные источники освещения, разряды молний и электросварки и пр.). Спектральные поддиапазоны 2,5 - 2,9 мкм и 4,0 - 4,4 мкм реагируют на излучения продуктов горения воды и углекислого газа.

Электронная логическая схема выделяет и сравнивает сигнал от пламени и фоновых оптических помех и принимает решение о переходе из дежурного режима в режим «Пожар».

Основные преимущества:

Высокая чувствительность при высокой помехозащищенности по отношению ко всем типам помех. К ним относятся: оптические помехи, помехи от электромагнитных полей, электростатических разрядов (в том числе при фоновой засветки от дуговой сварки), люминесцентных лампам, лампам накаливания, солнца, разрядов молний и всевозможных видов мерцающих источников различного цвета и интенсивности.

- Малое энергопотребление, что позволяет осуществлять питание извещателей по шлейфу сигнализации и устанавливать их в один шлейф с дымовыми и тепловыми извещателями.
- Совместимость с большинством существующих приемно-контрольных приборов, вариант исполнения под стандартную розетку дымового извещателя.
- Высокое быстродействие (до 1 мс) при сохранении высокой помехозащищенности.
- Наличие взрывобезопасного исполнения.
- Высокая надежность.
- Многообразие вариантов исполнения (пластмассовые и металлические корпуса, степени защиты оболочкой от IP41 до IP67).
- Малые габариты и масса.
- Возможность изготовления партий извещателей, под специальные требования заказчика.
- Конкурентоспособная цена.

Извещатели пламени "НАБАТ" способные обнаруживать следующие очаги пожара:

Нефть, горюче-смазочные материалы и легко воспламеняющиеся жидкости, горящие с выделением дыма (тестовый очаг ТП-5): дизельное топливо и бензины, гептан, толуол, топливо для реактивных двигателей, трансформаторное масло и рабочие масла компрессоров и насосов.

Легко воспламеняющиеся жидкости, горящие без выделения дыма (тестовый очаг ТП-6): метан, этан, пропан, бутан, спирты (метанол, этанол, пропанол), ацетон.

Легко воспламеняющиеся вещества, не содержащие углерод: водород, аммиак, гидразины, азид натрия.

Горение древесины и полимерных материалов (тестовые очаги ТП-1, ТП-4).

Тлеющие очаги пожара: тление торфа, угля, древесины.

ПОЖАРНЫЕ ИЗВЕЩАТЕЛИ ПЛАМЕНИ "НАБАТ"

	Наличие взрывозащ. исполнения	Степень защиты	Место установки	Описание	Фото
AT 1" 2-1/1)	да	IP 41		Инфракрасные извещатели	
"НАБАТ 1 ³ (ИП332-1/1		IP 54	помещение	пламени. Подключаются к двухпроводному шлейфу приемно-контрольного	
"НАБАТ 1М" (ИП332-1/1М)	да	IP 67	помещение, улица	прибора. Выходной сигнал извещателя формируется увеличением тока потребления.	
"НАБАТ 5М" (ИП330-5М-1)	да	IP 67	помещение, улица	Инфракрасный извещатель пламени. Двух или четырехпроводное подключение. Выходной сигнал извещателя формируется увеличением тока потребления или замыканием контактов оптореле.	
S32-1/2)		IP 41		Инфракрасный извещатель пламени.	
"НАБАТ (ИП332-1	нет	IP 54	помещение	Выходной сигнал извещателя формируется контактным способом при помощи срабатывания реле.	20
4T 3" 2-1/3)		IP 41		Инфракрасный извещатель пламени. Конструкция извещателя предусматривает подклю-	
"НАБАТ 3" (ИП332-1/3)	нет	IP 54	помещение	чение к шлейфу пожарной сигнализации с помощью розетки РИД-6М и позволяет использовать его в вместе с дымовыми и тепловыми извещателями.	

	Наличие взрывозащ. исполнения	Степень защиты	Место установки	Описание	Фото
"НАБАТ А" (ИП330-6/2-1)	нет	IP 67	помещение, улица	Инфракрасный адресный извещатель пламени. Предназначен для подключения к адресному шлейфу ППКП «Колокол-1». Имеет встроенные изолятор короткого замыкания адресного шлейфа и систему контроля чистоты оптики.	
"НАБАТ ИК/УФ" (ИП329/330-3-1)	да	IP 67	помещение, улица	Многодиапазонный ИК/УФ извещатель пламени. Двух или четырехпроводное подключение. Выходной сигнал извещателя формируется увеличением тока потребления или замыканием контактов оптореле.	

СИГНАЛИЗАТОР НАЛИЧИЯ ПЛАМЕНИ ОПТОЭЛЕКТРОННЫЙ "СНП ОЭ-1»

Выпускается в двух вариантах:

ИНФРАКРАСНЫЙ ПОЖАРНЫЙ ПРЕОБРАЗОВАТЕЛЬ "ИПП-2А", "ИПП-2Б"

Предназначен для изготовления на его основе радиоканальных или адресных пожарных извещателей пламени путем сопряжения с платой радиомодема или интерфейсной платой. Плата радиомодема (интерфейсная плата) устанавливается внутрь корпуса преобразователя.

ПРИБОР ПРИЕМНО-КОНТРОЛЬНЫЙ ПОЖАРНЫЙ "КОЛОКОЛ-1"

Предназначен для использования в системах пожарной сигнализации и автоматического пожаротушения объектов, расположенных как в обычных, так и во взрывоопасных зонах.

Подробные характеристики извещателей «Набат» и других приборов безопасности приведены в каталоге «Приборы систем безопасности»

АО "НИИ "ГИРИКОНД"

ИНФРАКРАСНЫЕ МНОГОДИАПАЗОННЫЕ ИЗВЕЩАТЕЛИ ПЛАМЕНИ

HABAT

ПРИБОРЫ СИСТЕМ БЕЗОПАСНОСТИ

КАТАЛОГ ПРОДУКЦИИ

СОДЕРЖАНИЕ

CO	ДЕРЖАНИЕ	3
о п	РЕДПРИЯТИИ	4
ин	ФРАКРАСНЫЕ И МНОГОДИАПАЗОННЫЕ ИЗВЕЩАТЕЛИ ПЛАМЕНИ "НАБАТ"	5
	Основные преимущества	6
	Модификации извещателей пламени "НАБАТ"	7
	1. Извещатели пламени "НАБАТ 1 НВЗ" и "НАБАТ 1М НВЗ" (обыкновенное исполнение)	9
	2. Извещатели пламени "НАБАТ 1 ВЗ" и "НАБАТ 1М ВЗ" (взрывозащищенное исполнение)	13
	3. Извещатели пламени "HAБAT 5M "	16
	4. Извещатели пламени "НАБАТ 2" (обыкновенное исполнение)	17
	5. Извещатель пламени "НАБАТ 3" (обыкновенное исполнение)	19
	6. Извещатель пламени "НАБАТ А" (обыкновенное исполнение)	21
	7. Инфракрасные извещатели пламени "НАБАТ" для особых условий эксплуатац	ии 23
	8. Многодиапазонный извещатель пламени "НАБАТ ИК/УФ"	24
	Блок искрозащиты на стабилитронах "БИС-1"	26
	Комплект тестовый взрывозащищенный	28
СИГ	ТНАЛИЗАТОР НАЛИЧИЯ ПЛАМЕНИ ОПТОЭЛЕКТРОННЫЙ "СНП ОЭ-1»	29
ин	ФРАКРАСНЫЙ ПОЖАРНЫЙ ПРЕОБРАЗОВАТЕЛЬ "ИПП-2А", "ИПП-2Б"	30
ПРИ	ИБОР ПРИЕМНО-КОНТРОЛЬНЫЙ ПОЖАРНЫЙ "КОЛОКОЛ-1"	31
CEP	тификаты	35
KΟI	НТАКТНАЯ ИНФОРМАЦИЯ	36

О ПРЕДПРИЯТИИ

"Гириконд", основанный в 1939 году, является ведущим предприятием в России и СНГ по разработке и производству электронных компонентов: конденсаторов, керамических фильтров, нелинейных полупроводниковых резисторов, фотоэлектрических полупроводниковых приемников излучения, полупроводниковых излучателей, датчиков и приборов на их основе, пожарных извещателей пламени "НАБАТ", а также материалов для

Научно-исследовательский институт

электронной техники.

Производство фотоприемников:

Изготовление фотоприемника извещателя является важнейшей частью технологического цикла производства извещателя пламени. Технология производства фотоприемников на основе PbSe и его твердых растворов, разработанная на нашем предприятии, является уникальной разработкой, что позволяет изготавливать фотоприемники среднего инфракрасного диапазона, не имеющие аналогов на рынке.

Производство серийной продукции:

Выпуск серийной продукции осуществляется на специализированном производственном участке. При изготовлении извещателей пламени мы используем современную элементную базу ведущих мировых производителей Atmel, Analog Devices, Microchip и др.

Наше предприятие отличается высокой культурой производства, у нас работают высококлассные специалисты, многие из которых имеют ученые степени.

Научно-исследовательская,

экспериментальная и производственная база АО "НИИ "Гириконд", коллектив высококвалифицированных специалистов позволяют разрабатывать и производить изделия, отвечающие современным требованиям технического прогресса, традиционно отличающиеся высокой надежностью и качеством. Нет отрасли в отечественной промышленности, где бы ни применялись изделия, созданные в АО "НИИ "Гириконд".

АО "НИИ" Гириконд" входит в состав холдинга "Российская электроника" и является базовым предприятием радиоэлектронного комплекса РФ в области конденсаторов и нелинейных полупроводниковых резисторов".

Помимо поставок широкого спектра ранее разработанных изделий мы готовы предложить Вам разработку, изготовление и поставку изделий по Вашим специальным техническим требованиям.

На производстве внедрена система менеджмента качества, подтвержденная сертификатом ISO 9001:2008

Надеемся на взаимовыгодное сотрудничество!

ИНФРАКРАСНЫЕ И МНОГОДИАПАЗОННЫЕ ИЗВЕЩАТЕЛИ ПЛАМЕНИ "НАБАТ"

Извещатели пламени "НАБАТ" предназначены для обнаружения очагов пламени или тления, сопровождающихся появлением электромагнитного излучения в ИК и УФ диапазонах.

Благодаря использованию принципа спектральной селекции в ИК диапазоне отличаются высоким быстродействием, устойчивостью к воздействию помех от солнечного излучения, ламп накаливания, люминесцентных ламп, разрядов молний, излучения электродуговой сварки, к другим источникам оптических и электромагнитных помех.

Большинство извещателей, представленных сегодня на рынке, регистрируют пламя путем его идентификации по низкочастотным колебаниям излучения. В извещателях пламени "НАБАТ" используется метод спектральной селекции, который позволяет идентифицировать наличие пламя по характерным спектральным линиям излучения паров воды и углекислого газа, присутствующим в спектре излучения пламени.

Извещатели пламени "НАБАТ" способны обнаруживать следующие очаги возгорания:

- нефть, горюче-смазочные материалы и легко воспламеняющиеся жидкости, горящие с выделением дыма (тестовый очаг ТП-5): дизельное топливо и бензины, гептан, толуол, топливо для реактивных двигателей, трансформаторное масло и рабочие масла компрессоров и насосов;
- легко воспламеняющиеся жидкости и газы. горящие без выделения дыма (тестовый очаг ТП-6): метан, этан, пропан, бутан, спирты – метанолы, этанолы, пропанолы, ацетон;
- легко воспламеняющиеся вещества, не содержащие углерод: водород, аммиак, гидразины, азид натрия;
- горение древесины и полимерных материалов очаги (ТП-1, ТП-4);
- торфа, угля, древесины.

Основные преимущества

Использование метода спектральной селекции для идентификации пламени в извещателях пламени "НАБАТ" позволило достичь следующих преимуществ:

1. Устойчивость к ложным срабатываниям по отношению ко всем типам помех (оптическим, электромагнитным, электростатическим разрядам, фоновой засветке от дуговой сварки, излучению люминесцентных ламп, ламп накаливания, излучению солнца, разрядов молний, мерцающих источников различной интенсивности)

Ложные срабатывания извещателей в современных системах пожарной сигнализации и автоматического пожаротушения могут привести к значительному материальному ущербу. Благодаря применению новых запатентованных технологий, все модификации извещателей пламени "НАБАТ" обладают высокой помехозащищенностью к различным источникам помех, что минимизирует возможность ложных срабатываний.

2. Высокое быстродействие (до 100 мс) при сохранении высокой помехозащищенности

Время срабатывания является одной из важнейших характеристик любого пожарного извещателя, так как за несколько секунд небольшой очаг пожара может разгореться до таких масштабов, что необходимо будет думать не о предотвращении пожара, а о немедленной эвакуации. Применение извещателей пламени "НАБАТ" позволит обнаружить первичные фазы формирования очага пламени или взрывного процесса.

3. Совместимость с большинством существующих приемно-контрольных приборов, вариант исполнения под стандартную розетку дымового датчика, малое энергопотребление (позволяет осуществлять питание извещателей по шлейфу сигнализации и устанавливать их в один шлейф с дымовыми и тепловыми датчиками)

Извещатели "НАБАТ" адаптированы к большинству существующих приемно-контрольных пультов. Выходной сигнал формируется либо увеличением тока потребления извещателя, либо контактным способом при помощи срабатывания реле. Имеются также модификации извещателей пламени, которые предусматривают подключение к шлейфу пожарной сигнализации с помощью розетки РИД-6М и позволяют использовать их в единой инфраструктуре с дымовыми и тепловыми извещателями.

4. Малые габариты и масса

Применение передовых разработок и современной элементной базы позволило изготовить извещатель пламени "НАБАТ" в виде малогабаритного спектрально - аналитического прибора, где фотоприемник и устройство обработки размещены в едином корпусе.

5. Возможность изготовления партий извещателей, под специальные требования заказчика

Разработка и производство извещателей пламени "НАБАТ" в ОАО "НИИ "Гириконд" основывается на собственных разработках и производстве самой важной части любого извещателя пламени фотоприемника. В результате имеется возможность адаптировать извещатель под Ваши требования, начиная с самой начальной стадии его изготовления.

Модификации извещателей пламени "НАБАТ"

	Наличие взрывозащ. исполнение	Степень защиты	Место установки	Описание	Фото
T 1" -1/1)		IP 41			
"НАБАТ 1 ³ (ИП332-1/1	да	IP 54	помещение	Инфракрасные извещатели пламени. Подключаются к двухпроводному шлейфу приемно-контрольного прибора.	
"НАБАТ 1М" (ИП332-1/1М)	да	IP 67	помещение, улица	Выходной сигнал извещателя формируется увеличением тока потребления.	
"НАБАТ 5М" (ИП330-5М-1)	да	IP 67	помещение, улица	Инфракрасный извещатель пламени. Двух или четырех-проводное подключение. Выходной сигнал извещателя формируется увеличением тока потребления или замыканием контактов оптореле.	
AT 2" 32-1/2)		IP 41		Инфракрасный извещатель пламени. Выходной сигнал извещателя	O
"НАБ/	нет	IP 54	помещение	формируется контактным способом при помощи срабатывания реле.	
Т 3" -1/3)		IP 41		Инфракрасный извещатель пламени. Конструкция извещателя предусматривает подключение к шлейфу	
"НАБАТ 3" (ИП332-1/3)	нет	IP 54	помещение	пожарной сигнализа- ции с помощью розетки РИД-6М и позволяет использовать его в вместе с дымовыми и тепловыми извещателями.	

	Наличие взрывозащ. исполнение	Степень защиты	Место установки	Описание	Фото
"НАБАТ А" (ИП330-6/2-1)	нет	IP 67	помещение, улица	Инфракрасный адресный извещатель пламени. Предназначен для подключения к адресному шлейфу ППКП «Колокол-1». Имеет встроенные изолятор короткого замыкания адресного шлейфа и систему контроля чистоты оптики.	
"НАБАТ ИК/УФ" (ИП329/330-3-1)	да	IP 67	помещение, улица	Многодиапазонный ИК/УФ извещатель пламени. Двух или четырех-проводное подключение. Выходной сигнал извещателя формируется увеличением тока потребления или замыканием контактов оптореле.	

1. Инфракрасные извещатели пламени "НАБАТ 1" НВЗ и "НАБАТ 1M" НВЗ (обыкновенное исполнение)

Подключаются двухпроводному шлейфу пожарной К сигнализации предназначены для совместной работы с приборами приемно-контрольными (ППК) и сигнально-пусковыми устройствами (УСП), обеспечивающими в шлейфе пожарной сигнализации постоянное напряжение питания с допустимыми периодическими прерываниями или переполюсовкой длительностью не более 100 мс и частотой повторения не более 1,5 Гц. Выходной сигнал формируется увеличением тока потребления извещателя.

Извещатели пламени "НАБАТ 1" (ИП332-1/1) со степенью защиты IP41 или IP 54 в обыкновенном исполнении предназначены для защиты помещений, где нет опасности образования взрывоопасных смесей газов, взвесей или аэрозолей:

- спортивных сооружений и других помещений с высотой потолка, превышающей 7 метров
- общественных зданий. музеев. театров. церквей. складов. ангаров, производственных и подсобных помещений промышленных предприятий
- объектов, для защиты которых невозможно применение дымовых тепловых извещателей. например. помещений с повышенной задымленностью производственной запыленностью.

Извещатели пламени "НАБАТ 1М" (ИПЗЗ2-1/1М) в обыкновенном исполнении предназначены для защиты объектов, расположенных внутри помещений с особо сложными условиями эксплуатации и вне помещений, на открытых площадках, где нет опасности образования взрывоопасных смесей, газов, взвесей или аэрозолей:

- производственных и подсобных помещений промышленных предприятий, машинных залов с мощными энергетическими установками и оборудованием
- объектов, расположенных на открытых площадках
- объектов, для защиты которых невозможно применение дымовых тепловых извещателей, например, помещений с очень высокой задымленностью и производственной запыленностью

Извещатели пламени "НАБАТ 1М" по желанию заказчика могут быть оснащены встроенной системой контроля запыленности входного окна (КЗО) с оптической индикацией превышения допустимого уровня загрязнения.

- 5	
`L	
◂	
- 12	
ш	
~	
_	
\neg	
_	
- 3	
_	
$\overline{}$	
_	
- 655	
ш	
$\overline{}$	
$\overline{}$	
⋖	
_	
_	
=	
_	
- 113	
-	
~	
ІЕ ИЗВЕЩАТЕЛИ ПЛАМЕНИ "НАБ	
\neg	
ш	
\sim	
ന	
\sim	
_	
ш	
_	
ூ	
=	
_	
_	
$\overline{}$	
0	
80	
30	
A30	
1A30	
NA30	
A 11 A 3 O	
IANA30	
1ANA30	
МАПАЗО	
ДИАПАЗО	
ДИАПАЗО	
ОДИАПАЗО	
-ОДИАПАЗО	
годиапазо	
ЭГОДИАПАЗО	
ОГОДИАПАЗО	
НОГОДИАПАЗО	
ТНОГОДИАПАЗО	
ИНОГОДИАПАЗО	
МНОГОДИАПАЗО	
МНОГОДИАПАЗО	
и многодиапазо	
и многодиапазо	
Е И МНОГОДИАПАЗО	
Е И МНОГОДИАПАЗО	
ыЕ И МНОГОДИАПАЗО	
ЫЕ И МНОГОДИАПАЗО	
НЫЕ И МНОГОДИАПАЗО	
ные и многодиапазо	
СНЫЕ И МНОГОДИАПАЗО	
СНЫЕ И МНОГОДИАПАЗО	
АСНЫЕ И МНОГОДИАПАЗО	
РАСНЫЕ И МНОГОДИАПАЗО	
РАСНЫЕ И МНОГОДИАПАЗОННЫ	
красные и многодиапазо	
КРАСНЫЕ И МНОГОДИАПАЗО	
АКРАСНЫЕ И МНОГОДИАПАЗО	
РАКРАСНЫЕ И МНОГОДИАПАЗО	
РАКРАСНЫЕ И МНОГОДИАПАЗО	
ФРАКРАСНЫЕ И МНОГОДИАПАЗО	
ФРАКРАСНЫЕ И МНОГОДИАПАЗО	
НФРАКРАСНЫЕ И МНОГОДИАПАЗО	
ІНФРАКРАСНЫЕ И МНОГОДИАПАЗО	
инфракрасные и многодиапазо	
ИНФРАКРАСНЫЕ И МНОГОДИАПАЗО	
: ИНФРАКРАСНЫЕ И МНОГОДИАПАЗО	

	Модификация	Степень защиты оболочкой	Масса	Габаритные размеры
"НАБАТ 1" (ИП332-1/1) НВЗ		IP41	260 г.	90х90х105 мм.
"HAБAT 1" (ИГ		IP54		WIWI.
" НАБАТ 1М " (ИП332-1/1М) НВ3		IP67	520 г.	85х96х116 мм

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Дальность обнаружения тестовых очагов	ТП-5 - не менее 25 м, ТП-6 - не менее 17 м	
Угол обзора при дальности обнаружения тестовых очагов, не менее:		
- на уровне 70% от дальности на оптич. оси	50 °	
- на уровне 50% от дальности на оптич. оси	80°	
Быстродействие	от 0,1 до 3 с.	
Диапазон рабочих температур	om −60 до +55° С	
Назначенный срок службы	10 лет	
Напряжение питания	от 12 до 29 В	
Ток, потребляемый при номинальном напряжении электропитания, не более	в дежурном режиме –200 мкА, в режиме "Пожар" – 20 ⁺⁵ мА	
Средняя наработка извещателей на отказ	60 000 часов	
Гарантийный срок эксплуатации	36 месяцев	

При наличии в поле зрения извещателя нагретых тел, требований устойчивости к прямой солнечной засветке - необходим выбор модификации извещателя выполненного по специальному заказу для особых условий эксплуатации (см. раздел "Инфракрасные извещатели пламени "НАБАТ" для особых условий эксплуатации").

2. Инфракрасные извещатели пламени "НАБАТ 1" ВЗ и "НАБАТ 1М" ВЗ (взрывозащищенное исполнение)

Подключаются к двухпроводному шлейфу пожарной сигнализации и предназначены для совместной работы с приборами приемно-контрольными (ППК) и сигнально-пусковыми устройствами (УСП), обеспечивающими в шлейфе пожарной сигнализации постоянное напряжение питания с допустимыми периодическими прерываниями или переполюсовкой длительностью не более 100 мс и частотой повторения не более 1,5 Гц. Выходной сигнал формируется увеличением тока потребления извещателя.

Извещатели пламени "НАБАТ 1" (ИП332-1/1) со степенью защиты IP41 или IP 54 во взрывозащищенном исполнении предназначены для защиты помещений, во взрывоопасных зонах <u>класса 1</u> и ниже, в которых возможно образование взрывоопасных смесей категорий <u>IIA, IIB, IIC</u> температурных <u>групп Т1-Т6</u>:

- нефтеперерабатывающих предприятий
- газохранилищ, газораспределительных и газокомпрессорных станций
- взрывоопасных химических производств и производств взрывчатых веществ

Извещатели пламени "НАБАТ 1М" (ИП332-1/1М) во взрывозащищенном исполнении предназначены для защиты объектов, расположенных внутри помещений с особо сложными условиями эксплуатации и вне помещений, на открытых площадках, во взрывоопасных зонах класса 1 и ниже, в которых возможно образование взрывоопасных смесей категорий IIA, IIB, IIC температурных групп Т1-Т6:

- нефтяных скважин, шельфовых нефтедобывающих платформ.
- нефтепроводов и установок для разжижения нефти при ее транспортировке по нефтепроводам, нефтехранилищ
- газопроводов
- морских терминалов для загрузки танкеров
- открытых площадок для хранения пожароопасных и взрывчатых веществ, складов горюче-смазочных материалов, гаражей и автозаправочных станций
- резервуарных парков сжиженных газов

При подключении модификации извещателя во взрывозащищенном исполнении к приемно-контрольным приборам, не имеющим искробезопасных шлейфов, необходимо использовать блок искрозащиты (БИС-1), который в комплект не входит и заказывается отдельно (см. раздел "БЛОК ИСКРОЗАЩИТЫ НА СТАБИЛИТРОНАХ "БИС-1").

Извещатели пламени "НАБАТ 1М" по желанию заказчика могут быть оснащены встроенной системой контроля запыленности входного окна (КЗО) с оптической индикацией превышения допустимого уровня загрязнения.

2
\vdash
Ϋ́
9
7
\$
$\overline{}$
Ŧ
ш
\leq
4
\subseteq
_
=
\Box
\vdash
⊴
\exists
ш
8
\overline{e}
쁮
#
+
$\dot{\sim}$
\approx
ď
\forall
Z
ಠ
0
\vdash
$\stackrel{\smile}{\sim}$
\pm
2
\mathbf{Z}
111
\equiv
Ŧ.
$\dot{\Box}$
Ž
يَ
$\stackrel{\sim}{\sim}$
∀
ф
ИНФРАКРАСНЫЕ И МНОГОДИАПАЗОННЫЕ ИЗВЕЩАТЕЛИ ПЛАМЕН
ŧ
- :
3a:

	Модификация	Степень защиты	Масса	Габаритные размеры
П332-1/1) ВЗ		IP41	200 -	90х90х105 мм.
" НАБАТ 1 " (ИП332-1/1) ВЗ		IP54	260 г.	
" НАБАТ 1М " (ИП332-1/1М) В3		IP67	520 г.	85х96х116 мм

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Маркировка взрывозащиты	1Ex ib IIC T6 Gb		
Дальность обнаружения тестовых очагов	ТП-5 - не менее 25 м, ТП-6 - не менее 17 м		
Угол обзора при дальности обнаружения тестовых очагов, не менее:			
- на уровне 70% от дальности на оптич. оси	50°		
- на уровне 50% от дальности на оптич. оси	80°		
Время срабатывания	om 0,1 до 3 с.		
Диапазон рабочих температур	om −60 до +55° С		
Напряжение питания	om 12 до 29 В (при использовании совместно с блоком искрозащиты БИС-1: om 22 до 26 В)		
Ток, потребляемый при номинальном напряжении электропитания, не более	в дежурном режиме –200 мкА, в режиме "Пожар" – 20 ⁺⁵ мА		
Параметры искробезопасной цепи	Ui=29B, Ii=85мA, Pi=0,65Bm, Ci=1000пΦ, Li=0,1мГ		
Средняя наработка извещателей на отказ	60 000 часов		
Гарантийный срок эксплуатации	36 месяцев		

При наличии в поле зрения извещателя нагретых тел, требований устойчивости к прямой солнечной засветке - необходим выбор модификации извещателя выполненного по специальному заказу для особых условий эксплуатации (см. раздел "Инфракрасные извещатели пламени "НАБАТ" для особых условий эксплуатации").

3. Инфракрасный извещатель пламени "НАБАТ 5М" ИП330-5М-1 (обыкновенное и взрывозащищенное исполнение)

Улучшены основные технические характеристики (по сравнению с извещателем "НАБАТ 1М"). Конструкция с кабельными вводами обеспечивает удобство монтажа и обслуживания извещателя

Области применения аналогичны извещателю "НАБАТ 1М".

Конструкция извещателя обеспечивает возможность как двухпроводного (электропитание по шлейфу пожарной сигнализации, токовый выход), так и четырехпроводного (электропитание от отдельного источника, релейный выход) подключения к приемно-контрольному прибору.

По сравнению с извещателем пламени "НАБАТ 1М":

- увеличена дальность обнаружения тестового очага ТП-6;
- увеличен угол обзора;
- расширен диапазон напряжений электропитания;
- более высокий класс взрывозащиты.

Извещатели пламени "НАБАТ 5М" (ИП330-5М-1) во взрывозащищенном исполнении предназначены для защиты объектов, расположенных внутри помещений с особо сложными условиями эксплуатации и вне помещений, на открытых площадках, во взрывоопасных зонах $\underline{\text{класса 0}}$ и ниже, в которых возможно образование взрывоопасных смесей $\underline{\text{категорий IIA}}$, $\underline{\text{IIB}}$, $\underline{\text{IIC}}$ температурных $\underline{\text{групп T1-T6}}$.

При подключении модификации извещателя во взрывозащищенном исполнении к приемно-контрольным приборам, не имеющим искробезопасных шлейфов, необходимо использовать блок искрозащиты (БИС-1), который в комплект не входит и заказывается отдельно (см. раздел "БЛОК ИСКРОЗАЩИТЫ НА СТАБИЛИТРОНАХ "БИС-1").

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

	T		
Дальность обнаружения тестовых очагов	ТП-5 - не менее 25 м, ТП-6 - не менее 25 м		
Маркировка взрывозащиты	0Ex ia IIC T6 Ga X		
Угол обзора при дальности обнаружения тестовых очагов, не менее:			
- на уровне 70% от дальности на оптич. оси	70 °		
- на уровне 50% от дальности на оптич. оси	90°		
Время срабатывания	om 0,1 до 3 c.		
Диапазон рабочих температур	om −50 ∂o +55° C		
Напряжение питания	от 8 до 29 В		
Ток, потребляемый при номинальном напряжении электропитания, не более	в дежурном режиме –200 мкА, в режиме "Пожар" – задается потребителем		
Параметры искробезопасной цепи:	Ui_20P		
- исполнение 1	Ui=29B, Ii=110мA, Pi=0,65Bm, Ci=1000пΦ, Li=0,1мГ		
- исполнение 2	Ui=15B, Ii=160мA, Pi=0,65Bm, Ci=1000πΦ, Li=0,1мГ		
Степень защиты оболочкой	IP67		
Габаритные размеры	не более 117х113х119 мм		
Macca,	не более 600 г		
Средняя наработка извещателей на отказ	не менее 60 000 часов		
Гарантийный срок эксплуатации	36 месяцев		

Извещатели пламени "НАБАТ 5М" по желанию заказчика могут быть оснащены встроенной системой контроля запыленности входного окна (КЗО) с оптической индикацией превышения допустимого уровня загрязнения.

При наличии в поле зрения извещателя нагретых тел, требований устойчивости к прямой солнечной засветке - необходим выбор модификации извещателя выполненного по специальному заказу для особых условий эксплуатации (см. раздел "Инфракрасные извещатели пламени "НАБАТ" для особых условий эксплуатации").

4. Инфракрасный извещатель пламени "НАБАТ 2" (обыкновенное исполнение)

Выходной сигнал извещателя формируется контактным способом при помощи срабатывания реле. Предназначен для использования в электрических цепях противопожарной сигнализации с применением независимого от этих цепей источника питания.

	Модификация	Степень защиты	Масса	Габаритные размеры
2-1/2"CK") HB3		IP41	IP41 260 г.	000004105
" НАБАТ 2 " (ИП332-1/2"СК") НВ3		IP54		90х90х105 мм.

Извещатели пламени "НАБАТ 2" (ИП332-1/2 "СК") со степенью защиты IP41 или IP 54 предназначены для защиты объектов, расположенных внутри помещений, где нет опасности образования взрывоопасных смесей, газов, взвесей или аэрозолей: офисов, индивидуальных гаражей, загородных коттеджей, дачных строений, отдельных изолированных помещений, где целесообразно применение извещателей для индивидуальной защиты единичных объектов с использованием четырехпроводного шлейфа, независимых источников питания и средств

оповещения.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Дальность обнаружения тестовых очагов	ТП-5 - не менее 25 м, ТП-6 - не менее 17 м
Угол обзора при дальности обнаружения тестовых очагов, не менее:	
- на уровне 70% от дальности на оптич. оси	50°
- на уровне 50% от дальности на оптич. оси	80°
Время срабатывания	от 0,1 до 3 с.
Диапазон рабочих температур	om −60 до +55° С
Назначенный срок службы	10 лет
Напряжение питания	от 12 до 29 В
Ток, потребляемый при номинальном напряжении электропитания, не более	в дежурном режиме –200 мкА
Средняя наработка извещателей на отказ	60 000 часов
Гарантийный срок эксплуатации	36 месяцев

При наличии в поле зрения извещателя нагретых тел, требований устойчивости к прямой солнечной засветке - необходим выбор модификации извещателя выполненного по специальному заказу для особых условий эксплуатации (см. раздел "Инфракрасные извещатели пламени "НАБАТ" для особых условий эксплуатации").

5. Инфракрасный извещатель пламени "НАБАТ 3" (обыкновенное исполнение)

Конструкция извещателя предусматривает подключение к шлейфу пожарной сигнализации с помощью розетки РИД-6М и позволяет использовать его в единой инфраструктуре с дымовыми и тепловыми извещателями. Подключается к двухпроводному шлейфу приемо-контрольного прибора. Выходной сигнал формируется увеличением тока потребления извещателя.

	Модификация	Степень защиты	Масса	Габаритные размеры
332-1/3) HB3		IP 41		
"НАБАТ 3" (ИПЗЗ2-1/3) НВЗ		IP 54	260 г.	100х41 мм.

Извещатели пламени "НАБАТ 3" (ИП332-1/3) со степенью защиты IP41 или IP 54 предназначены для защиты объектов, где невозможно образование взрывоопасных смесей, газов, взвесей или аэрозолей: транспортных средств (железнодорожные вагоны, вагоны пригородных электропоездов, метро), промышленных и гражданских объектов в качестве извещателя, работающего в единой инфраструктуре с извещателями дыма и тепловыми извещателями.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Дальность обнаружения тестовых очагов	ТП-5 - не менее 25 м, ТП-6 - не менее 17 м
Угол обзора при дальности обнаружения тестовых очагов, не менее:	
- на уровне 70% от дальности на оптич. оси	50°
- на уровне 50% от дальности на оптич. оси	80°
Время срабатывания	от 0,1 до 3 с.
Диапазон рабочих температур	om −60 до +55° С
Назначенный срок службы	10 лет
Напряжение питания	om 12 до 29 В
Ток, потребляемый при номинальном напряжении электропитания, не более	в дежурном режиме –200 мкА, в режиме "Пожар" – 20 ⁺⁵ мА
Средняя наработка извещателей на отказ	60 000 часов
Гарантийный срок эксплуатации	36 месяцев

При наличии в поле зрения извещателя нагретых тел, требований устойчивости к прямой солнечной засветке - необходим выбор модификации извещателя выполненного по специальному заказу для особых условий эксплуатации (см. раздел "Инфракрасные извещатели пламени "НАБАТ" для особых условий эксплуатации").

6. Инфракрасный адресный извещатель пламени "НАБАТ А" ИП330-6/2-1 (обыкновенное исполнение)

Извещатель пожарный пламени инфракрасный адресный ИП330-6/2 "НАБАТ А" предназначен для совместной работы с пультом приемно-контрольным пожарным «Колокол-1», имеющим в своем составе блок управления адресным шлейфом (БУШ-А). При этом электропитание извещателя и обмен информацией между ним и БУШ-А осуществляется по двухпроводному адресному шлейфу пожарной сигнализации.

Извещатель имеет встроенные систему проверки чистоты входного окна и изолятор короткого замыкания адресного шлейфа.

Извещатели пламени "НАБАТ А" (ИП330-6/2-1) в обыкновенном исполнении предназначены для защиты объектов, расположенных внутри помещений с особо сложными условиями эксплуатации и вне помещений, на открытых площадках, где нет опасности образования взрывоопасных смесей, газов, взвесей или аэрозолей:

- производственных и подсобных помещений промышленных предприятий, машинных залов с мощными энергетическими установками и оборудованием
- объектов, расположенных на открытых площадках
- объектов, для защиты которых невозможно применение дымовых тепловых извещателей, например, помещений с очень высокой задымленностью и производственной запыленностью.

Извещатель обеспечивает выдачу извещений в соответствии с установленным адресом:

- "Пожар" при воздействии электромагнитного излучения пламени достаточной интенсивности;
- "Неисправность" при при загрязнении входного окна выше допустимого предела;
- "КЗ адресного шлейфа" при при возникновении короткого замыкания в ближайших к извещателю участках адресного шлейфа;

"Норма" - при отсутствии других извещений.

В режимах "КЗ адресного шлейфа" и "Неисправность" извещатель продолжает контролировать наличие ИК-излучения пламени и, в случае его обнаружения, переходит в режим "Пожар".

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Дальность обнаружения тестовых очагов	ТП-5 - не менее 25 м, ТП-6 - не менее 25 м
Угол обзора при дальности обнаружения тестовых очагов, не менее:	
- на уровне 70% от дальности на оптич. оси	50°
- на уровне 50% от дальности на оптич. оси	80°
Время срабатывания, не более	3 c
Диапазон адресов	от 0 до 63
Информативность (количество передаваемых извещений)	4
Ток потребления в режиме "Норма"	не более 700 мкА;
Степень защиты оболочкой	IP67
Диапазон рабочих температур	om –40 до +55°С
Габаритные размеры извещателей	не более 177x113 x119 мм
Macca	не более 600 г.

При наличии в поле зрения извещателя нагретых тел, требований устойчивости к прямой солнечной засветке - необходим выбор модификации извещателя выполненного по специальному заказу для особых условий эксплуатации (см. раздел "Инфракрасные извещатели пламени "НАБАТ" для особых условий эксплуатации").

7. Инфракрасные извещатели пламени "НАБАТ" для особых условий эксплуатации

По желанию заказчика извещатели пламени могут быть изготовлены со следующими техническими характеристиками:

- Дальность обнаружения стандартных очагов пожара: ТП-5 не менее 40 м, ТП-6 не менее 27 м.
- Время срабатывания **не более 0,1 с**, для обнаружения первичных фаз взрывного процесса и реализация режима взрывоподавления.
- Значение тока, потребляемого извещателем в режиме "ПОЖАР" в диапазоне от 5 до 25 мА.
- Режим работы при наличии солнечной засветки до 70 000 лк без потери работоспособности извещателя.
- Режимы работы при наличии в поле зрения извещателя нагретых тел с температурой **от 100°C до 250°C** и от **250°C до 500°C** без потери работоспособности извещателя.
- Вариант конструкции извещателя, обеспечивающий угол обзора 90°.

8. Многодиапазонный извещатель пламени "НАБАТ ИК/УФ" ИП329/330-3-1 (обыкновенное и взрывозащищенное исполнение)

Многодиапазонный (ИК/УФ) извешатель пламени «Набат» обладает максимальной помехозащищенностью ко всем видам оптических помех. Предназначен для применения на особо ответственных объектах нефтяной, газовой, химической промышленности в условиях тяжелой помеховой обстановки.

Благодаря использованию метода спектральной селекции в ИК канале и наличию дополнительного УФ канала извещатель сохраняет работоспособность и не теряет чувствительность при прямой солнечной засветке, засветках от искусственных источников освещения и при наличии в поле зрения нагретых объектов.

Извещатель может подключаться к неадресному шлейфу блока БУШ-И ППКП 'Колокол-1", а также к большинству имеющихся на рынке ППКП с обычными или искробезопасными шлейфами. Обеспечивает как двухпроводное (питание извещателя по ШС), так и четырехпроводное (отдельная линия питания) подключение. Ток, потребляемый в дежурном режиме, не более 350 мкА.

Извещатель пламени "НАБАТ ИК/УФ" (ИП329/330-3-1) во взрывозащищенном исполнении предназначен для защиты объектов, во взрывоопасных зонах класса 0 и ниже, в которых возможно образование взрывоопасных смесей категорий IIA, IIB, IIC температурных групп T1-T6.

При подключении модификации извещателя во взрывозащищенном исполнении к приемно-контрольным приборам, не имеющим искробезопасных шлейфов, необходимо использовать блок искрозащиты (БИС-1), который в комплект не входит и заказывается отдельно (см. раздел "БЛОК ИСКРОЗАЩИТЫ НА СТАБИЛИТРОНАХ "БИС-1").

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Дальность обнаружения тестовых очагов	ТП-5 - не менее 25 м, ТП-6 - не менее 25 м
Устойчивость к оптическим помехам:	
- прямая солнечная засветка	70000 лк
- лампы накаливания	1000 лк
- люминесцентные лампы	нечувствителен
- светодиодные лампы	нечувствителен
	•
- излучение нагретых объектов	с температурой до 500 °C
Маркировка взрывозащиты	0Ex ia IIC T6 Ga X
Угол обзора при дальности обнаружения тестовых очагов, не менее:	
- на уровне 70% от дальности на оптич. оси	70°
- на уровне 50% от дальности на оптич. оси	90°
Время срабатывания	6 сек
Диапазон рабочих температур	om −50 ∂o +55° C
Напряжение питания	om 8 до 29 В
Ток, потребляемый при номинальном напряжении электропитания, не более	в дежурном режиме –350 мкА, в режиме "Пожар" – задается потребителем
Параметры искробезопасной цепи:	W 000 K 440 A D 0.050
- исполнение 1	Ui=29B, Ii=110мA, Pi=0,65Bm, Ci=1000πΦ, Li=0,1мГ
- исполнение 2	Ui=15B, Ii=160мA, Pi=0,65Bm, Ci=1000пΦ, Li=0,1мГ
Степень защиты оболочкой	IP67
Габаритные размеры	не более 117х113х119 мм
Macca,	не более 600 г
Средняя наработка извещателей на отказ	не менее 60 000 часов
Гарантийный срок эксплуатации	36 месяцев

Блок искрозащиты на стабилитронах "БИС-1"

Предназначен для сопряжения пожарных приемно-контрольных приборов (ППК), расположенных вне взрывоопасной зоны с устройствами находящимися в зонах с взрывоопасной атмосферой, в том числе с извещателями пламени «НАБАТ» во взрывозащищенном исполнении

БИС -1 необходимо заказывать при подключении взрывозащищенных извещателей «НАБАТ» к приемно-контрольным приборам не имеющим искробезопасных шлейфов пожарной сигнализации.

Рекомендации по количеству извещателей, подключаемых в шлейф различных приемно-контрольных приборов через блок искрозащиты приведены на нашем сайте www.nabat-detector.ru в разделе «Примеры схем подключения извещателей».

БИС-1 является пассивным барьером искрозащиты, относится к классу связанного оборудования и отвечает требованиям ГОСТ Р МЭК 60079-0-2011 и **FOCT P M9K 60079-11-2010**

Используется один БИС-1 на один шлейф пожарной сигнализации

Блок искрозащиты БИС-1 должен устанавливаться только вне взрывоопасной 30НЫ.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Маркировка взрывозащиты	[Ex ia Ga] IIC
Параметры искробезопасной цепи	Um =250 B , U_0 =28,4 B , I_0 =83 mA , P_0 =0,59 Bm , C_0 =0,07 m k ϕ , L_0 =2 m Γ m
Диапазон рабочих температур	om –40 до +55°С
Степень защиты оболочкой	IP55
Габаритные размеры не более:	135х85,5х46 мм
Macca	200 z.
Гарантийный срок эксплуатации	36 месяцев

Комплект тестовый взрывозащищенный

Предназначен для проверки работоспособности инфракрасных извещателей пламени "НАБАТ"

В комплект входят взрывозащищенный светильник Stabex HF производства фирмы "COOPER CROUSE HINDS GmbH" (Германия) и одна из оптических приставок производства АО "НИИ "Гириконд":

- ТЦАФ.301519.004 для проверки работоспособности инфракрасных извещателей пламени "НАБАТ", кроме изготовленных для особых условий эксплуатации (тестовый комплект №1);
- ТЦАФ.301519.005 для проверки работоспособности инфракрасных извещателей пламени "НАБАТ",изготовленных для эксплуатации при наличии в поле зрения нагретых объектов с температурой от 100 до 250 °С или прямой солнечной засветки 70000 лк (тестовый комплект №2);
- ТЦАФ.301519.006 для проверки работоспособности инфракрасных извещателей пламени "НАБАТ",изготовленных для эксплуатации при наличии в поле зрения нагретых объектов с температурой от 250 до 500 °C (тестовый комплект №3).

Светильник Stabex HF представляет собой электрический фонарь выполненный во взрывозащищенном исполнении, имеющий маркировку взрывозащиты 2ExibIICT4 (сертификат соответствия № РОСС DE.ГБ05.В02674). Оптическая приставка — это помещенный в металлическую оправу (для обеспечения возможности соединения со светильником Stabex) интерференционный фильтр, выделяющий в инфракрасной части спектра излучения лампы накаливания фонаря характерные для пламени спектральные линии, по которым извещатели пламени "НАБАТ" производят идентификацию пламени. Кроме того, интерференционный фильтр прозрачен в диапазоне длин волн видимой глазом части спектра, что позволяет легко наводить фонарь на фотоприемник тестируемого извещателя.

СИГНАЛИЗАТОР НАЛИЧИЯ ПЛАМЕНИ ОПТОЭЛЕКТРОННЫЙ "СНП ОЭ-1"

Состоит из трех частей: датчика пламени, сигнализатора горения, кабеля.

Предназначен для контроля наличия или отсутствия пламени в горелочных устройствах, сжигающих газ, мазут или дизельное топливо.

Сохраняют работоспособность при наличии в поле зрения нагретых тел до 1000°C.

Выпускается в двух вариантах:

"П" ("прямой") - оптическая ось датчика пламени совпадает с его продольной геометрической осью

"У" ("угловой") - оптическая ось датчика пламени направлена перпендикулярно его продольной геометрической оси

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Время срабатывания при появлении, пропадании пламени или при обнаружении неисправности	2 сек
Напряжение питания	18-29 B
Ток потребления	не более 100 мА
Максимальный постоянный ток, коммутируемый контактами реле	при напряжении до 30 В – 2 А, при напряжении до 115 В – 0,5А
Степень защиты оболочкой	IP54
Диапазон рабочих температур	om –40 до +55°C
Габаритные размеры	датчик пламени не более 65х46х46 мм, сигнализатор горения не более 140х65х55 мм, длина кабеля не более 800 мм
Macca	не более 600 г
Гарантийный срок эксплуатации	18 месяцев с момента ввода в эксплуатацию
Напряжение питания	18-29 B

ИНФРАКРАСНЫЙ ПОЖАРНЫЙ ПРЕОБРАЗОВАТЕЛЬ ИПП-2А, ИПП-2Б

Предназначен для изготовления на его основе радиоканальных или адресных пожарных извещателей пламени путем сопряжения с платой радиомодема или интерфейсной платой. Плата радиомодема (интерфейсная плата) устанавливается внутрь корпуса преобразователя.

Преобразователь ИПП-2А имеет встроенную систему контроля загрязнения входного окна (КЗО) с выдачей сигнала "Неисправность".

Преобразователи имеют три уровня чувствительности:

Иуротритов, поот	Высокая	Высокая Средняя			
Чувствительность	м				
По очагу ТП-5	25	17	12		
По очагу ТП-6	17	12	8		

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Угол обзора от 50°до 90°
- Диапазон рабочих температур преобразователей от −40 до +55 С.
- Напряжение питания от 2,45 до 5,5 В постоянного тока.
- Средний ток потребляемый преобразователем при напряжении питания 2,5 B *не* более 15 мкА.
- Габаритные размеры корпуса преобразователей 85х96х116 мм.
- Масса: не более 600 г.
- Степень защиты оболочкой IP67

ПРИБОР ПРИЕМНО-КОНТРОЛЬНЫЙ ПОЖАРНЫЙ "КОЛОКОЛ-1"

Предназначен для использования в системах пожарной сигнализации и автоматического пожаротушения объектов, расположенных как в обычных, так и во взрывоопасных зонах.

ППКП "Колокол-1" создан по блочному принципу. Это означает, что заказчик может самостоятельно, в зависимости от параметров создаваемой системы пожарной сигнализации или автоматического пожаротушения, определять необходимую конфигурацию прибора.

Параметры прибора оптимизированы для использования совместно с извещателями пламени "НАБАТ". Также к прибору могут подключаться другие серийно выпускаемые активные (питающиеся по шлейфу) пожарные извещатели способные работать при напряжении питания 12 В.

В максимальной комплектации ППКП включает в себя:

- центральный блок (ЦБ);
- три блока управления шлейфами (БУШ-И) с искробезопасными шлейфами, и три блока управления адресным шлейфом (БУШ-А);
- три блока с релейными выходами (БР);
- источник питания (ИП).

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- Информационная емкость ППКП (количество контролируемых ШС и адресных устройств):
 - неадресных ШС *до 24;*
 - адресных устройств до 192.
- Информативность (количество принимаемых видов извещений) 12.
- ЦБ осуществляет управление всеми блоками и принимает информацию о их состоянии с помощью двухпроводной линии связи по интерфейсу *RS485*
- В составе ЦБ имеется ЖК-индикатор, на котором отображается информация о состоянии шлейфов и часы реального времени. Также в состав ЦБ входят три реле ("Пожар", "Сирена", "Неисправность") и светодиодные индикаторы, дублирующие информацию на ЖКИ. В энергонезависимой памяти ЦБ имеется журнал на 1024 события с информацией о дате и времени каждого события.
- БУШ-И обеспечивает питание и осуществляет контроль состояния каждого из 8 искробезопасных шлейфов сигнализации и выдает соответствующую информацию на на ЦБ.
- БУШ-И относится к классу связанного электрооборудования, имеет маркировку взрывозащиты [Ex ia Ga] IIC и соответствует требованиям ГОСТ Р МЭК 60079-0-2011, ГОСТ Р МЭК 60079-11-2010.
- БУШ-И предназначен для установки вне взрывоопасной зоны.
- Параметры искробезопасных шлейфов БУШ-И: U_0 =12,12 B; I_0 =133 MA; C_0 =1 $MK\Phi$; L_0 =20 $M\Gamma H$.
- БУШ-И обеспечивает возможность программирования тактики формирования извещения о пожаре:
 - -тактика с вниманием (при срабатывании одного извещателя в шлейфе— режим "ВНИМАНИЕ", при срабатывании двух и более извещателей в шлейфе— режим "ПОЖАР");
 - -тактика без внимания (при срабатывании одного и более извещателей в шлейфе режим "ПОЖАР").
- БУШ-И выдает на ЦБ следующие извещения:
 - -"HOPMA":

- -"ВНИМАНИЕ" (при выборе тактики с вниманием);
- *-"ПОЖАР":*
- -"КЗ" при коротком замыкании в шлейфе;
- -"ОБРЫВ" при обрыве в шлейфе;

В каждый шлейф БУШ-И может быть включено до 10 извещателей пламени «НАБАТ». Для каждого шлейфа может быть назначен свой релейный выход в БР. БУШ-И имеет светодиодные индикаторы, отображающие состояние каждого шлейфа.

- БУШ-А контролирует состояние одного адресного шлейфа пожарной сигнализации (АШС). В АШС может быть включено до 64 адресных извещателей «Набат А». АШС включает в себя 8 зон по 8 извещателей в каждой.
- Для каждой зоны может быть назначен свой релейный выход в БР.
- На корпусе БУШ-А размещены три светодиодных индикатора состояния шлейфов ("Пожар", "КЗ", "Неисправность").
- Минимально возможная комплектация ППКП, позволяющая организовать систему пожарной сигнализации - один ЦБ + один БУШ-И (или БУШ-А) + ИП. В этом случае ППКП обеспечивает контроль 8 неадресных или 1 адресного пожарного шлейфа.
- Максимально (при использовании 3 БУШ-И и 3 БУШ-А) ППКП обеспечивает контроль 24 неадресных пожарных шлейфов по 10 неадресных извещателей пламени "НАБАТ" в каждом и 3 адресных шлейфов по 64 адресных извещателя пламени "НАБАТ А".
- БР имеет 8 релейных выходов и позволяет использовать ППКП для работы в составе автоматических систем пожаротушения. Каждому шлейфу БУШ-И, или каждой адресной зоне в БУШ-А может быть назначен свой релейный выход в БР. В БР имеются светодиодные индикаторы, отображающие состояние каждого реле.
- Максимальные ток и напряжение, коммутируемые контактами реле ЦБ и БР:
 - по постоянному току 2 A и 30 B соответственно;
 - по переменному току частотой 50 Гц 2 A и 250 B соответственно.

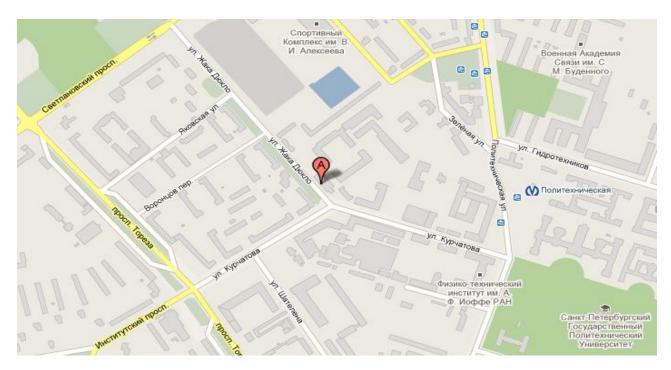
СЕРТИФИКАТЫ

На систему менеджмента качества АО "НИИ "ГИРИКОНД"

№ POCC RU.ИС12.К00140 - Сертификат соответствия требованиям ГОСТ ISO 9001-2011 (ISO 9001:2008), срок действия до 14.04.2017 г.

На продукцию

Вся выпускаемая АО "НИИ "Гириконд" продукция в области средств пожарной автоматики прошла обязательную сертификацию на соответствие Техническому регламенту о требованиях пожарной безопасности (Федеральный Закон № 123 ФЗ).


Продукция во взрывобезопасном исполнении дополнительно сертифицированы на соответствие требованиям Технического регламента Таможенного союза "О безопасности оборудования для работы во взрывоопасных средах" (ТР ТС 012/2011).

С полным перечнем сертификатов на нашу продукцию можно ознакомиться на нашем сайте www.nabat-detector.ru.

КОНТАКТНАЯ ИНФОРМАЦИЯ

194223, САНКТ-ПЕТЕРБУРГ, ул. Курчатова 10, АО "НИИ "Гириконд".

Прием заказов и поставки:

Отдел сбыта и маркетинга -

тел. (812) 247-14-60, факс (812) 552-60-57

E-mail: 33@giricond.ru

Техническая консультация:

Барканов Николай Юрьевич

тел. (812)552-90-53, факс (812)552-90-53

E-mail: 213@giricond.ru

Смирнов Александр Евгеньевич

тел. (812)552-94-35, факс (812)552-90-53

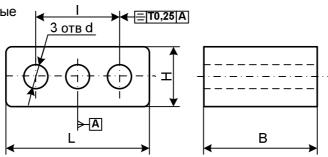
E-mail: 217@giricond.ru

Кулагов Вадим Борисович (по вопросам подключения извещателей к приемно-

контрольным пультам)

тел. (812) 552-94-35, факс (812) 552-90-53

E-mail: 21@giricond.ru



Микроволновая диэлектрическая керамика находит широкое применение в радиотелефонии, спутниковой связи, навигации и других направлениях для изготовления узлов и приборов СВЧ-техники. ОАО «НИИ ГИРИКОНД» в рамках договора о партнерстве с ООО «Керамика» (www.ceramics.sp.ru) развивает данное направление, проводя совместные разработки и организовывая производство широкого класса микроволновых изделий (диэлектрических резонаторов, подложек, волноводов, пластин и цилиндров) из керамических материалов с диэлектрической проницаемостью от 5 до 10000.

Технические условия: АЖЯР.434839.001 ТУ Категория качества «ВП» по ГОСТ РВ 20.39.411

Предназначены для использования в качестве коаксиальных керамических резонаторов в микроволновых фильтрах.

Конструкция: незащищенные

Диэлектрическая проницаемость керамического материала ε (при T = 20±5 °C)	40; 80
Резонансная частота f _{рез}	700 2150 МГц
Температурный коэффициент резонансной частоты, ТКЧ (T = -60 +60 °C)	±5·10 ⁻⁶ /°C
Добротность Q, не менее	400
Климатическое исполнение*	-
Гамма-процентная наработка до отказа при γ=95%, в пределах срока службы 20 лет, не менее, ч	50000
Гамма-процентный срок сохраняемости при γ=95%, лет	20

^{*}Устройства селекции изготавливают в климатическом исполнении только для эксплуатации в составе герметизированной аппаратуры или герметизированных узлов (блоков) аппаратуры.

Обозначение	Гараритные размеры Г			• •	рическая емость, ε		ансная ı f _{рез} , МГц	Масса, г, не			
типоразмера	L	Н	В	I	d	Номин.	Допуск. откл., %	Номин.	Допуск. откл., %	более	
		,	10,3±0,15			80		814	±0,5		
T-1	13,9 _{-0,4}	5,8±0,2	11,5±0,15		7,7±0,2		40		1031	±0,3	6,5
			5,7±0,08		1,8±0,15	40	±2,5	2080	±1		
			6,0±0,08	1,8±0,15		1,0±0,10	40	±2,5	1976	<u> </u>	
T-2	18,6 _{-0,4}	6,1±0,2	10,8±0,15	12,0±0,2		80		777	±0,5	8,5	
			12,0±0,15			40		988	±0,5		

По требованию потребителей устройства селекции могут быть изготовлены с любыми значениями резонансной частоты из диапазонов:

700 .. 1520 МГц – для ε = 80;

985 .. 2150 МГц – для ϵ = 40.

Допускаемые отклонения резонансной частоты:

- $\pm 0,5$ МГц для диапазона частот от 700 до 1050 МГц;
- ±1 МГц для диапазона частот св. 1050 до 2150 МГц.

Обозначение при заказе: устройство селекции УС-1-Т2-777-80 АЖЯР.434839.001 ТУ

Композиционные проводниковые и резистивные пасты

Используются для формирования проводниковых и резистивных элементов на плоской керамической подложке методом толстопленочной технологии.

Композиционные пасты наносятся на подложку методом трафаретной печати через сетчатый трафарет, вжигание проводится в конвейерной печи в воздушной среде.

Проводниковые серебряные пасты СрП-V-15-05,07 и серебропалладиевые пасты СрПП -1

Технические условия: ТУ 6365-012-23079412-2014

Предназначены для изготовления проводников гибридных интегральных схем и контактов толстопленочных резисторов.

- Совместимы с резисторами на основе соединений Ag-Pd, RuO₂, LaB₆, SnO₂ и др.
- Хорошо облуживаются серебросодержащими и олово-свинцовыми припоями.
- Проводниковые слои имеют:
 - низкое удельное поверхностное сопротивление ($\rho_S \le 0.01$ Ом/ \square для серебряных и $\rho_S \le 0.04$ Ом/ \square для серебропалладиевых);
 - высокую адгезию к алюмооксидной керамике (σ_{aq} ≥ 80 кг/см²);
 - минимальную ширину линий 150 ... 200 мкм;
 - минимальное расстояние между линиями 150 ... 200 мкм.
- Срок хранения 12 мес.

Обозначение при заказе: Паста проводниковая серебряная СрП-V-15-05 ТУ 6365-012-23079412-2014
Паста проводниковая серебропалладиевая СрПП-1 ТУ 6365-012-23079412-2014

Резистивные пасты серий ПРБН, ПРБЛ, ПРС

Технические условия: ТЦАФ.430417.001 ТУ ГК (для пасты ПРС)

Предназначены для изготовления резистивных элементов. Не содержат драгоценных металлов.

Основные характеристики резистивных элементов:

- Поверхностное удельное сопротивление ρ_s : 1,0 ... 10¹² Ом/□
- Выдерживают электрические нагрузки 5 Вт/см².
- Выдерживают воздействие электрического поля от 20 В/мм (для ПБН, ПРБЛ) до 1 кВ/мм (для ПРС).
- Рабочий диапазон температур -60 ... +125 °C
- Срок хранения 12 мес.

Данные по температурному коэффициенту и стабильности резистивных элементов приведены в таблице.

Обозначение при заказе: Паста резистивная ПРБЛ 500 Ом/□

		ΔR/R после воздействия, %, не более							
ρ _S , /	TKC, 10 ⁻⁶ /°C (-60 +125°C	Термоциклы (60 +125)°С	T = 250°C 1000 ч	T = 85°C P = 5 Вт/см ² 1000 ч	T = 40°C Отн. вл. 93% 21 сутки				
	Резистивные элементы на основе паст типа ПРБН								
1	+2000	±3 ±2 ±		.2	±2	±2			
2	±500	Ð	±z	±Z	±Z				
	Резистив	вные элементы н	на основе пас	т типа ПРБЛ					
50	±350								
100	±250								
500	±150	±0,5	±0,1	±0,1 ±0,1	±1,0				
1000	±100								
3000	±100								
5000	±100								
10000	-250								
20000	-250								
	Резисти	вные элементы	на основе па	ст типа ПРС					
50x10 ³									
100x10 ³									
1x10 ⁶	-1000±200	±0,5	±0,5	±1,0	±1,0				
10x10 ⁶									
100x10 ⁶									
1x10 ⁹									
10x10 ⁹	-1500±500	±1,0	±1,0	±1,0	±1,0				
100x10 ⁹									
1x10 ¹²	-2000±500	±2,0	±2,0	±2,0	±2,0				

Электропроводящие клеи

Технические условия: ТЦАФ.670094.015 ТУ (серебросодержащие)

УБО.028.040 ТУ (никельсодержащие)

Предназначены для создания различных видов электрических соединений и покрытий.

ЭПК представляют собой композиционные материалы, содержащие полимерное связующее и электропроводящий мелкодисперсный наполнитель. Такой состав обеспечивает сочетание клеящей способности, конструктивных и технологических свойств полимерных материалов с высокой электропроводностью, характерной для металлов и сплавов.

Основные характеристики

Основные параметры	K-13	K-17	КН-3
Диапазон рабочих температур, °С	-60 +100	-60 +155	-60 +155
Удельное сопротивление, Ом∙см	5x10 ⁻⁴	5x10 ⁻⁴	5x10 ⁻³
Прочность склеивания, кг/см²	25	150	200
Жизнеспособность, мес.	6	6	6

Рекомендации по использованию электропроводящих клеев

Режим термообработки:

К-13 – в нормальных условиях – 24 часа или при Т = 120 °C − 4 часа;

К-17 - в нормальных условиях ~ 30 мин., затем при T = 180 °C – не менее 4 часов;

КН-3 - в нормальных условиях \sim 24 часа, затем при T = 200 °C - 10 часов или при T = 240 °C - 1 час;

Рекомендуемый материал для контакта:

K-13 – Ag, Pt, Pd, Cu

K-17 - Ag, Pt, Pd, Cu

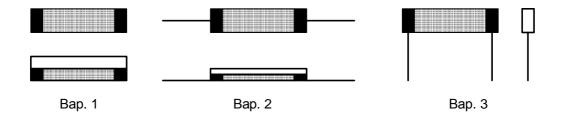
KH-3 - Ni, Al

Разбавитель (для корректировки вязкости):

К-13 – циклогексанон

К-17 — этилцеллозольв

КН-3 — этилцеллозольв


Обозначение при заказе: электропроводящий клей К-13 ТЦАФ.670094.015 ТУ

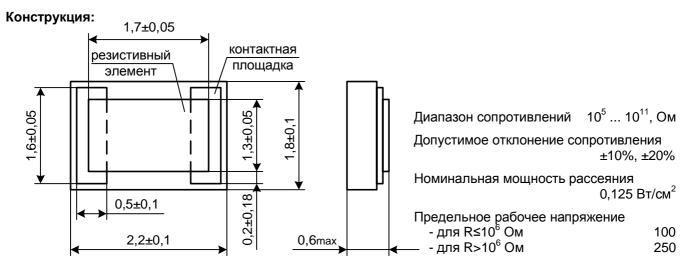
Постоянные толстопленочные резисторы

Технические условия: АДПК.434115.001 ТУ; АДПК.434115.002 ТУ, ГОСТ 24238-84

Предназначены для эксплуатации в цепях постоянного и переменного токов. Непроволочные неизолированные плоские с широким диапазоном сопротивлений.

Конструкция:

Основные характеристики


Диапазон сопротивлений	1,0 10 ¹³ Ом
Допускаемое отклонение сопротивления	±5%, ±10%, ±20%
Номинальная мощность рассеяния	0,125 50 Вт
Предельное рабочее напряжение	10 15000 B
Габаритные размеры	2,2 x 1,8 x 0,5 60 x 48 x 1,0 мм
ТКС в интервале температур -60 +125 °C, макс., 10⁻6/°C:	
	+2000 для R≤10 Ом ±500 для R=10 50 Ом ±250 для R=100 500 Ом ±100 для R=10 ³ 5·10 ³ Ом ±250 для R=10 ⁴ 2·10 ⁴ Ом -1500 для R=5·10 ⁴ 10 ⁹ Ом -2500 для R=2·10 ⁹ 10 ¹² Ом
Наработка	20000 ч
Срок сохраняемости	12 лет
Климатическое исполнение	УХЛ 2.1 по ГОСТ 15150-69

Габаритные размеры, длина и расположение выводов, а также наличие защитных покрытий могут варьироваться по желанию заказчика.

Высокоомные постоянные ЧИП-резисторы Р1-73

Технические условия: АДПК.434115.001 ТУ

Предназначены для эксплуатации в качестве встроенных элементов внутри комплектных изделий в цепях постоянного и переменного токов.

ТКС в интервале температур -60 ... +125 °C, 10^{-6} /°C, макс.

- для R=10³ ... 10⁹ Ом до 1500 - для R>2·10⁹ Ом до 2500 Габаритные размеры 2,2 x 1,8 x 0,5 ... 60 x 48 x 1,0 мм Промежуточные значения сопротивлений по ряду Е-24 Масса 0,01 г Гарантийная наработка 20000 ч Срок сохраняемости 12 лет

Климатическое исполнение УХЛ 2.1 ГОСТ 15150-69

Монтаж резисторов может производиться методом поверхностного монтажа, а также путем распайки или разварки проволочных соединений.

Обозначение при заказе: резистор P1-73 - 2,2 МОм ±10 АДПК.434115.001 ТУ

Плоские толстопленочные резисторы повышенной мощности (пленочные нагревательные элементы)

Предназначены для эффективного подогрева любых плоских поверхностей, а также воздушной и жидкой сред.

В качестве основания ПНЭ могут использоваться обычные керамические подложки, а также кафельная плитка.

Применение ПНЭ:

- для обогрева боковых зеркал автомобилей
- для обогреваемых емкостей с постоянной температурой
- для подогрева таблеток, пропитанных специальным инсектицидным средством в составе фумигаторов
- для подогрева масла в силовых трансформаторах и т.д.

Достоинства ПНЭ:

- надежность
- экономичность
- равномерность нагрева
- возможность компоновки элементов на больших поверхностях
- экологичность
- отсутствие горючих материалов

Основные характеристики

Удельная полезная мощность (в зависимости от подложки и способа крепления элементов) $5 \dots 8 \text{ BT/cm}^2$ Напряжение питания (переменное или постоянное) $12 \dots 220 \text{ B}$ Максимальная температура поверхности $70 \dots 250 \text{ °C}$ Размеры ПНЭ $1,8 \times 2,2 \dots 60 \times 48 \text{ мм}$

Обозначение при заказе: пленочные нагревательные элементы ($\Pi H \ni$) – 5 BT/cm² – 12 B

Компаунды эпоксидные заливочные

Технические условия: ТУ 2257-003-23079412-2002

Предназначены для защиты от внешних воздействий и герметизации изделий радиоэлектронной техники (в том числе полупроводниковой техники, интегральных микросхем) и электротехники, эксплуатирующихся в интервале температур -60 °C ... +125 °C, при относительной влажности воздуха до 98% и рабочем напряжении до 50 кВ (в зависимости от конструктивных особенностей изделий).

- В зависимости от конструктивных особенностей изделий возможно применение компаундов на более высокое рабочее напряжение.
- Компаунд ЭК-23А имеет более низкую вязкость, чем ЭК-23, что технологически расширяет спектр его применения.
- Компаунд «ГИРЛЕН-2» имеет значительно большую вязкость, что позволяет использовать его не только в качестве заливочного, но также и обволакивающего материала, не допускающего вытекания из узких зазоров. Применяемый в качестве небольшой добавки каучук позволяет повысить адгезию материала.
- Затвердевание компаундов происходит при комнатной температуре.
- Компаунды не содержат токсичных веществ.

Основные характеристики

Удельное объемное электрическое сопротивление, не менее - при +20 °C - при +125 °C - после 1000 часов испытаний в условиях тропической влажности	1·10 ¹³ Ом·м 1·10 ⁷ Ом·м 1·10 ¹¹ Ом·м
Тангенс угла диэлектрических потерь (f = 10 ³ Гц), не более - при +20 °C - при +125 °C - после 1000 часов испытаний в условиях тропической влажности	0,010 0,110 0,150
Влагопоглощение после 1000 часов испытаний в условиях тропической влажности	2,5%
Предел прочности при разрыве - при +20 °C - при -60 °C	35,0 МПа 40,0 МПа
Внутренние напряжения - при +20 °C - при -60 °C	3,0 МПа 15,0 МПа
Жизнеспособность	30 40 мин
Время отверждения	12 ч (t _к)
Режим полимеризации	100/6 °С/ч

Обозначение при заказе: компаунд эпоксидный «ГИРЛЕН-2» ТУ2257-003-23079412-2002

Компаунды эпоксидные заливочные эластичные

Технические условия: УБ0.028.054 ТУ

Предназначены для защиты от внешних воздействий и герметизации изделий радиоэлектронной техники (в том числе полупроводниковой техники, интегральных микросхем) и электротехники, эксплуатирующихся в интервале температур -60 °C ... +100 °C, при относительной влажности воздуха до 96% и рабочем напряжении до 50 кВ (в зависимости от конструктивных особенностей изделия).

- Представляют собой смесь эпоксидной диановой смолы с пигментом и отвердителем аминного типа.
- Отличаются повышенной жизнеспособностью (более 10 ч) и низким внутренним напряжением за счет применения отвердителя аминного типа.
- Имеют повышенную эластичность и устойчивость к воздействию механических нагрузок.
- Компаунды ЭК-34а и ЭК-34б содержат смесь наполнителей, придающих тиксотропные свойства.
- Компаунды ЭК-34 и ЭК-34в являются низковязкими композициями, удобными для механизированной заливки.
- Производство компаундов отличается повышенной экологической чистотой.
- Защищены авторским свидетельством № 247916, приоритет от 06.04.84 г.

Основные характеристики

Удельное объемное электрическое сопротивление, не менее - при +20 °C - при +100 °C - после 1000 часов испытаний в условиях	1·10 ¹¹ 1·10 ¹² Ом·м 5·10 ⁷ 1·10 ⁸ Ом·м
тропической влажности	7·10 ⁸ 1·10 ¹⁰ Ом·м
Тангенс угла диэлектрических потерь (f = 10 ³ Гц), не более - при +20 °C - при +100 °C - после 1000 часов испытаний в условиях тропической влажност	0,04 0,07 0,06 0,09 ги 0,09 0,18
Удельное поверхностное сопротивление	1·10 ¹⁵ Ом
Влагопоглощение после 1000 часов испытаний в условиях тропической влажности	2,5 3,0%
Предел прочности при растяжении - при -60 °C	35 60 МПа
Внутренние напряжения - при -60 °C	6,0 9,0 МПа
Время отверждения	12 ч
Температура отверждения	+60 +80 °C

Обозначение при заказе: компаунд эпоксидный ЭК-34 УБ0.028.054 ТУ

Компаунды эпоксидные заливочные эластифицировынные без разбавителя

Технические условия: УБ0.037.367 ТИ; ТЦАФ.670094.000 ТУ

Предназначены для защиты от внешних воздействий и герметизации изделий радиоэлектронной техники (в том числе полупроводниковой техники, интегральных микросхем) и электротехники, эксплуатирующихся в интервале температур -60 °C ... +125 °C, при относительной влажности воздуха до 96% и рабочем напряжении до 100 кВ (в зависимости от конструктивных особенностей изделия).

- Имеют высокие диэлектрические, физико-механические и технологические свойства.
- Представляют собой смесь эпоксидной смолы, минерального наполнителя, пигмента и уникального отвердителя аминного типа, который выполняет также функции разбавителя—пластификатора.
- Трудногорючий вариант компаунда ЭК-54Т содержит в своем составе антипирен.
- Затвердевание компаунда происходит при комнатной температуре. Возможно ускорение процессов отверждения при обработке компаунда ультразвуком.
- Компаунды имеют невысокие внутренние напряжения и повышенную механическую прочность при нижних значениях диапазона рабочих температур. Не вступают в реакцию с углекислотой воздуха в условиях повышенной влажности и температуры с образованием поверхностных солей – карбаматов, поэтому имеют высокое удельное поверхностное сопротивление и отличную глянцевую поверхность.
- Компаунды не содержат токсичных веществ, относятся к 4 классу опасности по ГОСТ 12.1.007-76.
- Защищены патентами России № 1786819, приоритет от 23.03.90 г., № 2039785, приоритет от 31.07.92 г.

Основные характеристики

Удельное объемное электрическое сопротивление, не менее - при +20 °C - при +125 °C - после 1000 часов испытаний в условиях тропической влажности	6·10 ¹² Ом·м 1·10 ⁸ Ом·м 5·10 ¹¹ Ом·м
Тангенс угла диэлектрических потерь (f = 10 ³ Гц), не более - при +20 °C - при +125 °C - после 1000 часов испытаний в условиях тропической влажности	0,012 0,120 0,045
Удельное поверхностное сопротивление	1·10 ¹⁵ Ом
Влагопоглощение после 1000 часов испытаний в условиях тропической влажности	2,0%
Предел прочности при разрыве - при +20 °C - при -60 °C	40,0 МПа 45,0 МПа
Внутренние напряжения - при +20 °C - при -60 °C	4,0 МПа 10,0 МПа
Жизнеспособность	1 4 ч (t _к)
Время отверждения	24 48 ч (t _к)
Режим полимеризации	100/8 °С/ч

Обозначение при заказе: компаунд эпоксидный ЭК-54 ТЦАФ.670094.000 ТУ

Компаунды эпоксикаучуковые эластичные заливочные

Технические условия: ТУ 2257-003-23079412-2002

Предназначены для защиты от внешних воздействий и герметизации изделий радиоэлектронной техники (в том числе полупроводниковой техники, интегральных микросхем) и электротехники, эксплуатирующихся в интервале температур -60 ... +100 °C, при относительной влажности воздуха до 96% и рабочем напряжении до 50 кВ (в зависимости от конструктивных особенностей изделия).

- Имеют высокие электроизоляционные характеристики.
- Добавка каучука обеспечивает повышенную эластичность компаундов, что позволяет герметизировать не только изделия, но и блоки изделий, содержащие тонкие вывода и работающие в условиях значительных механических и тепловых нагрузок.
- Компаунд «ГИРЛЕН-1С» наиболее низковязкая композиция, что позволяет использовать его для механизированной заливки, а также заливки в небольшие отверстия, зазоры.
- Компаунд «ГИРЛЕН-4» обладает малой жизнеспособностью (~20 мин) по сравнению с остальными компаундами (~120 мин), но ускоренным режимом отверждения.
- Затвердевание компаундов происходит при комнатной температуре.
- Компаунды не содержат токсичных веществ, относятся к 4 классу опасности по ГОСТ 12.1.007-76.

Основные характеристики

Удельное объемное электрическое сопротивление, не менее - при +20 °C - при +100 °C - после 100 часов испытаний в условиях	1·10 ¹³ Om·m 1·10 ¹¹ Om·m
тропической влажности	1-10 ¹¹ Ом-м
Тангенс угла диэлектрических потерь (f = 10 ³ Гц), не более - при +20 °C - при +100 °C - после 100 часов испытаний в условиях тропической влажности	0,0105 0,100 0,040
Влагопоглощение после 100 часов испытаний в условиях тропической влажности	1,0%
Предел прочности при сдвиге	11,0 МПа
Жизнеспособность - «ГИРЛЕН-1», «ГИРЛЕН-1С» - «ГИРЛЕН-4»	100 130 мин 15 25 мин
Время отверждения - «ГИРЛЕН-1», «ГИРЛЕН-1С» - «ГИРЛЕН-4»	48 ч (t _к) 6 10 ч (t _к)
Режим полимеризации	100/6 °С/ч

Обозначение при заказе: компаунд эпоксидный «ГИРЛЕН-1» ТУ2257-003-23079412-2002

Компаунды эпоксидные заливочные эластифицированные без разбавителя

Технические условия: ТУ 2257-003-23079412-2002

Предназначены для защиты от внешних воздействий и герметизации изделий радиоэлектронной техники (в том числе полупроводниковой техники, интегральных микросхем) и электротехники, эксплуатирующихся в интервале температур -60 ... +125 °C, при относительной влажности воздуха до 98% и рабочем напряжении до 50 кВ (в зависимости от конструктивных особенностей изделия).

- Низкая вязкость состава, а также применение уникального отвердителя, придающего композиции внутреннюю эластификацию, позволяют использовать его в качестве пропитывающего материала для изделий, работающих в условиях повышенных нагрузок (механических, тепловых).
- Прозрачность компаунда «ГИРЛЕН-3» позволяет использовать его для заливки блоков, требующих контроля во время эксплуатации.
- Отличная глянцевая поверхность дает возможность использовать его для декоративных защитных внешних покрытий.
- Затвердевание компаунда происходит при комнатной температуре.
- Компаунды не содержат токсичных веществ, относятся к 4 классу опасности по ГОСТ 12.1.007-76.

Основные характеристики

Удельное объемное электрическое сопротивление, не менее - при +20 °C - при +125 °C - после 1000 часов испытаний в условиях тропической влажности	1·10 ¹³ Ом·м 1·10 ⁶ Ом·м 1·10 ⁹ Ом·м
Тангенс угла диэлектрических потерь (f = 10 ³ Гц), не более - при +20 °C - при +125 °C - после 1000 часов испытаний в условиях тропической влажности	0,015 0,120 0,250
Удельное поверхностное сопротивление	1·10 ¹⁵ Ом
Влагопоглощение после 1000 часов испытаний в условиях тропической влажности	2,0%
Предел прочности при разрыве - при +20 °C - при -60 °C	40,0 МПа 45,0 МПа
Внутренние напряжения - при +20 °C - при -60 °C	4,0 MΠa 10,0 MΠa
Жизнеспособность	4 ч
Время отверждения	48 ч (t _к)
Режим полимеризации	100/6 °С/ч

Обозначение при заказе: компаунд эпоксидный «ГИРЛЕН-3» ТУ2257-003-23079412-2002

Компаунды эпоксикаучуковые эластичные заливочные

Технические условия: ТУ 2257-003-23079412-2002

Предназначены для защиты от внешних воздействий и герметизации изделий радиоэлектронной техники (в том числе полупроводниковой техники, интегральных микросхем) и электротехники, эксплуатирующихся в интервале температур -60 ... +100 °C, при относительной влажности воздуха до 96% и рабочем напряжении до 50 кВ (в зависимости от конструктивных особенностей изделия).

- Имеют высокие электроизоляционные характеристики.
- Добавка каучука обеспечивает повышенную эластичность компаундов, что позволяет герметизировать не только изделия, но и блоки изделий, содержащие тонкие вывода и работающие в условиях значительных механических и тепловых нагрузок.
- Компаунд «Гирлен 5» эпоксикаучуковая композиция для обволакивания.
- Компаунд «Гирлен 6» эпоксикаучуковая композиция для заливки и обволакивания, например чип-элементов, расположенных на плате.
- Затвердевание компаундов происходит при комнатной температуре.
- Компаунды не содержат токсичных веществ, относятся к 4 классу опасности по ГОСТ 12.1.007-76.

Основные характеристики

Удельное объемное электрическое сопротивление, не менее - при +20 °C - при +100 °C - после 100 часов испытаний в условиях	1·10 ¹⁴ Om·m 1·10 ¹⁰ Om·m
тропической влажности	1·10 ¹¹ Ом·м
Тангенс угла диэлектрических потерь (f = 10 ³ Гц), не более - при +20 °C - при +100 °C - после 1000 часов испытаний в условиях тропической влажности	0,02 0,2 0,15
Влагопоглощение после 100 часов испытаний в условиях тропической влажности	2,0%
Предел прочности при растяжении, кгс/см ²	
«Гирлен-5» «Гирлен-6»	25,0 20,0
Жизнеспособность	
Твердость по Шору, у.е. «Гирлен-5» «Гирлен-6» Время отверждения при t комн., час.	80 90
«Гирлен-5» «Гирлен-6»	2 - 2,5 1 - 1,5
Режим полимеризации	60/4 °С/час

Обозначение при заказе: «Гирлен-5» ТУ2257-003-23079412-2002

Компаунды эпоксидные, тиксотропные, покровные, трудногорючие

Технические условия: УБ0.051.028 ТУ

Предназначены для защиты от внешних воздействий и герметизации изделий радиоэлектронной техники (в том числе полупроводниковой техники, интегральных микросхем) и электротехники, эксплуатирующихся в интервале температур -60 °C ... +125 °C, при относительной влажности воздуха до 98% и рабочем напряжении до 50 кВ (в зависимости от конструктивных особенностей изделия).

- ЭК-93 эпоксидная композиция на основе эпоксидной смолы ЭД-20, наполнителей и других добавок.
- Герметизация изделий осуществляется методом окунания.
- Затвердевание компаунда происходит при комнатной температуре.

Основные характеристики

Удельное объемное электрическое сопротивление	
- при +20 °C	1·10 ¹¹ Ом·м
- при +100 °C - после выдержки в течение 56 суток	5·10 ⁷ Ом·м
при относительной влажности 95±3% и температуре 40 °C	1·10 ⁷ Ом·м
Тангенс угла диэлектрических потерь (f = 10 ³ Гц), не более	
- при +20 °C - при +100 °C	0,025 0,04 0,1
- после выдержки в течение 56 суток	,
при относительной влажности 95±3% и температуре 40 °C	0,11 0,13
Диэлектрическая проницаемость (при 10 ⁶ Гц)	-
- при +20 °C - при +100 °C	5 10,1
Влагопоглощение после 1000 часов испытаний	-,
в условиях тропической влажности	2,5%
Плотность	1400 кг/м ³
Предел прочности при разрыве	30,0 МПа
Ударная вязкость	12,0 кДж/м ²
Модуль упругости при разрыве	7400 МПа
Модуль упругости при изгибе	1870 - 2600 M∏a
Коэффициент линейного расширения	4,9⋅10 ⁻⁵ 1/κ
Усадка	1%
Жизнеспособность	3 3,5 ч
Время отверждения	12 ч
Режим полимеризации	100/6 °С/ч

Обозначение при заказе: компаунд эпоксидный ЭК-93 УБ0.051.028 ТУ

Компаунды эпоксидные тиксотропные, покровные, трудногорючие

Технические условия: УБ0.028.041 ТУ

Предназначены для защиты от внешних воздействий и герметизации изделий радиоэлектронной техники (в том числе полупроводниковой техники, интегральных микросхем) и электротехники, эксплуатирующихся в интервале температур -60 ... +155 °C, при относительной влажности воздуха до 95%.

- Отличаются длительной жизнеспособностью.
- Смешиваются в сухом виде с последующим совмещением с растворителями.

Основные характеристики

Удельное объемное электрическое сопротивление	
- при +20 °C	10 ¹² Ом·м
- при +155 °C	10 ⁸ Ом∙м
- после выдержки в течение 1000 часов	
при относительной влажности 95±3% и температуре	± 40 °C 10 ⁸ Ом∙м
Тангенс угла диэлектрических потерь (f = 10 ³ Гц и 20 °C	С), не более
- при +20 °C	0,04
- при +155 °C	0,10
- после выдержки в течение 1000 часов	
при относительной влажности 95±3% и температуре	e 40 °C 0,10
Влагопоглощение после 1000 часов испытаний	
в условиях тропической влажности	1,2 1,5%
Внутренние напряжения	2,3 МПа
Механическая прочность по Динстату	0,28 МПа
Адгезия к стальной проволоке	23,0 МПа
Жизнеспособность (неотвержденный компаунд)	
- сухой смеси	6 мес
- жидкого компаунда	0,5 мес
Режим полимеризации	80/12 или 100/6 или 120/3 °C/ч

Обозначение при заказе: компаунд эпоксидный Э-4А УБ0.028.041 ТУ

Эпоксидные эластифицированные клеи

Технические условия: ТУ 2252-001-23079412-97

Предназначены для использования в изделиях, подвергающихся механическим воздействиям и требующих эластифицированных (не жестких) соединений, эксплуатируемых при температуре -60 ... +100 °C и относительной влажности до 96%.

ГИРЛЕН-1

Для склеивания между собой и с металлами кожи, полимерных материалов, резины, а также ремонта обуви (заливки трещин, отверстий на подошве, наращивания набоек, изготовления предохранительного слоя на подошве, приклеивания каблуков).

ГИРЛЕН-2

Для склеивания металлов (сталь, алюминий, латунь, ковар), керамики, стекла, фарфора, дерева, пластмассы.

Для заделки трещин, царапин, сколов на изделиях из указанных материалов, а также в качестве шпатлевки с последующей механической обработкой и окраской ремонтируемого изделия.

ГИРЛЕН-3

Для склеивания стекла, оптических фильтров, прозрачных пластмасс и для нанесения тонких прозрачных водостойких покрытий на стекло, металлы, дерево.

ГИРЛЕН-У

Для склеивания металлов (сталь, алюминий, латунь, ковар), кожи, резины, дерева, фарфора, стекла, полимерных материалов при необходимости быстрого формирования клеевого шва.

Основные характеристики

Наименование показателя	ГИРЛЕН-1	ГИРЛЕН-2	ГИРЛЕН-3	ГИРЛЕН-У
Время гелеобразования (20 °C), мин	60	40	120	20
Предел прочности при сдвиге, МПа	10	15	25	10
Соотношение компонентов клея по массе (основа: отвердитель)	10 : 1,6	10 : 1,0	10 : 3,0	10 : 1,2
Время отверждения (20 °C)	24 часа			
Гарантийный срок хранения	2 года со дня изготовления			

- Механическую прочность клея можно увеличить дополнительным тепловым воздействием до $60-70\,^{\circ}\text{C}$ в течение 5 часов.
- Все клеи «Гирлен» обладают электроизоляционными свойствами.
- В комплект поставки клея «Гирлен» входят две емкости: основа и отвердитель.
- Клей «Гирлен» не предназначен для склеивания полиолефинов и фторопласта.

Технические условия на флюсы ФВ, ФА, ФП, ФТФ: ТЦАФ.670094.013 ТУ, 2000 г.

Технические условия на паяльную пасту ППВО (ППВр): ТЦАФ.670092.001 ТУ, 1999 г.

- Не снижают сопротивление изоляции.
- Отмывка остатков флюса после пайки не требуется или производится водой или спиртом.

Тип		Назначение		
	I. Флюсы			
ΦΤΦ*	водорастворимый флюс для механизированной пайки печатных плат	Для пайки и лужения меди и ее сплавов, а также покрытий на основе Sn, Cd, Zn, Pb-Sn, с использованием припоев Pb-Sn, Pb-Sn-Bi (окунанием, волной припоя, и др. способами). Остатки отмываются водой или спиртом		
ФΠ	водорастворимый флюс для пайки печатных плат	Для навесного монтажа компонентов на печатные платы. Вязкий, не содержит спирт. Остатки отмываются водой.		
ΦВ	экологически чистый некоррозийный флюс с минимальным содержанием твердой фазы	Для ручной и механизированной пайки и облуживания. Остатки после пайки не коррозийны и не требуют отмывки, но при необходимости можно отмыть спиртом.		
ФА	флюс для труднопаяемых материалов и восстановления паяемости	Для пайки стали и ее сплавов, гальванических покрытий Ni и др. труднопаяльных материалов, восстановления, паяемости выводов, узлов и деталей РЭА. Остатки отмываются водой или спиртом.		
ФЛ-1	некоррозийный смолосодержащ ий активированный флюс	Для пайки монтажных соединений и выводов с сильно окисленной поверхностью. Может использоваться как консервант. При необходимости остатки отмываются спиртом.		
ФКСП	спиртоканифольный флюс	Для пайки и лужения меди, серебра, олова, оловянно- свинцовых, оловянно-никилиевых, висмутовых, кадмиевых, золотых покрытий. При необходимости остатки отмываются спиртом.		
AT	водорастворимый флюс для пайки ИЭТ в печах	Для пайки и лужения никеля и покрытий на основе Ni. Возможна пайка керамических заготовок в печах. Остатки отмываются кипячением в воде или спиртом.		
II. Паяльные пасты				
ППВО (ППВр)**	водорастворимая паяльная паста	Для навесного монтажа радиодеталей и компонентов на печатные платы. Допускается использование для конструкционной пайки. Остатки отмываются водой или спиртом.		
ППСО	спирторастворимая паяльная паста	Для навесного монтажа деталей и компонентов на печатные платы. Допускается использование для конструкционной пайки. Остатки отмываются спиртом.		
ППБО	безотмывочная паяльная паста	Для навесного монтажа радиодеталей и компонентов на печатные платы. Остатки отмываются спиртом.		

Примечания:

^{*} Не разбрызгивается, не дымит, не выделяет вредных газов.

^{**} Срок годности 1 год, использование пасты не приводит к коррозии.

Тип	Коэффициент растекаемости	Интервал рабочих температур, °C	Время смачивания, с	Флюсующая активность, относительные единицы
ФТФ	1,8	120 400	2,0	3,0
ΦП	4,9	110 320	2,0	3,0 4,0
ΦВ	4,8	110 300	1,5	2,0 3,0
ФА	2,6	150 350	2,0	3,0 5,0
ФЛ-1	1,5	150 300	1,5	1,8 2,3
ФКСП	1,3	200 300	2,0	2,0 3,0
AT	1,5	120 350	2,0	3,0 4,0
ППВО (ППВр)	2,2 3,5	150 300	-	-
ППСО	2,2 3,0	150 300	-	-
ППБО	2,2 3,5	150 220	-	-